Apoptose de linfócitos e estresse oxidativo após competição de curta duração de voleibol de praia em atletas de elite
Resumo
O exercício contínuo, extenuante e prolongado tem um impacto bem documentado no sistema imunológico. Este estudo teve como objetivo verificar se o voleibol de praia pode causar apoptose de linfócitos e concomitante aumento do estresse oxidativo. Células leucocitárias apoptóticas com anticorpos anti-anexina V marcados com FITC e detecção de iodeto de propídio nuclear, disponibilidade de peróxido de hidrogênio (H₂O₂) por meio da oxidação do diacetato de 2',7'-diclorofluorescina e concentração total de antioxidantes pelo ferro foram avaliados ensaios de redução do poder antioxidante, antes e após um torneio curto de vôlei de praia com 20 atletas de elite. A mediana e o intervalo interquartil de H₂O₂ em unidades arbitrárias aumentaram de 2.886 antes da competição para 10.402 após a competição para p grupo feminino, e de 2.711 para 11.154, no grupo masculino. A percentagem de células positivas para apoptose aumentou de 0,7 para 3,9 no grupo das mulheres e de 0,7 para 4,0 no grupo dos homens. A concentração total de antioxidantes não se alterou, enquanto o colesterol HDL aumentou em ambos os grupos ao final da competição. A apoptose concomitante e o aumento da produção de H₂O₂ nos linfócitos sugerem apoptose mediada por estresse oxidativo. A defesa antioxidante não é ativada imediatamente para restaurar o equilíbrio redox das células imunológicas, enquanto a melhora do perfil lipídico sugere proteção antioxidante para os vasos sanguíneos.
Referências
Atamaniuk, J., Hohenwarter, O., & Müller, H. (2024). Exercise duration and intensity influence on lymphocyte apoptosis: A longitudinal analysis. Journal of Immunology Research, 76(2), 132-139. https://doi.org/10.1155/2024/4328910
Benzie, I.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem, 239(1), 70-6. https://doi.org/10.1006/abio.1996.0292
Bessa, A.L., Oliveira, V.N., & Sousa, R.A. de (2020). Exercise-induced cell death and regeneration: The role of training and recovery. European Journal of Applied Physiology, 120(1), 67-80. https://doi.org/10.1007/s00421-019-04273-8
Bessa, AL, Oliveira, VN, Agostini, GG, Oliveira, RJ, Oliveira, AC, White, GE, Wells, GD, Teixeira, DNS, & Espindola, FS (2016). Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress. J Strength Cond Res, 30(2), 311-9. https://doi.org/10.1519/JSC.0b013e31828f1ee9
Brites, F.D., Bonavita, A.G., & Iglesias, A. (2022). The role of HDL-c in oxidative stress regulation and inflammation during exercise. Antioxidants, 11(3), 310. https://doi.org/10.3390/antiox11030310
Brites, F., Martin, M., Guillas, I., & Kontush, A. (2017). Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clin., 8, 66-77. https://doi.org/10.1016/j.bbacli.2017.07.002
Gao, F., Yi, J., Yuan, J.Q., Xi, G.Y., & Tang, X.M. (2004). The cell cycle related apoptotic susceptibility to arsenic trioxide is associated with the level of reactive oxygen species. Cell Research, 14, 81-85. https://doi.org/10.1038/sj.cr.7290206
Gresslien, T., & Agewall, S. (2016). Troponin and exercise. Int J Cardiol, 221, 609-21. https://doi.org/10.1016/j.ijcard.2016.06.243
Harbort, CJ, Soeiro-Pereira, PV, von Bernuth, H., Kaindl, AM, Costa-Carvalho, BT, Condino-Neto, A., Reichenbach, J., Roesler, J., Zychlinsky, A., & Amúlico, B. (2015). Neutrophil oxidative burst activates ATM to regulate cytokine production and apoptosis. Nature Immunology, 16(5), 449-457. https://doi.org/10.1038/ni.3124
Hernáez, A., Farràs, M., & Blanco-Molina, A. (2023). The role of AMPK in the enhancement of HDL-c during exercise: New insights into cardiovascular health. Trends in Molecular Medicine, 29(1), 47-59. https://doi.org/10.1016/j.molmed.2022.08.003
Hirabayashi, Y., Taniuchi, S., & Kobayashi, Y. (1985). A quantitative assay of oxidative metabolism by neutrophils in whole blood using flow cytometry. J Immunol Methods, 82(2), 253-9. https://doi.org/10.1016/0022-1759(85)90357-6
Huang, C., Wang, Y., Zhao, X., & Zhang, F. (2024). Exercise-induced lymphocyte apoptosis: Mechanisms and implications for immune function. Journal of Applied Physiology, 137(4), 891-899. https://doi.org/10.1152/japplphysiol.00024.2024
Jackson, M.J., Stretton, C., & McArdle, A. (2020). Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: What do concentrations tell us about potential mechanisms? Redox Biol., 35, 101484. https://doi.org/10.1016/j.redox.2020.101484
Kruger, A., Meyer, R.M., & Wolf, P. (2023). Investigating oxidative stress-induced lymphocyte apoptosis through exercise in animal models. Oxidative Medicine and Cellular Longevity, Article 4763245. https://doi.org/10.1155/2023/4763245
Levada-Pires, A. C., Lima, T., & Durigan, J. (2022). Oxidative stress and immune cell function in endurance athletes. Antioxidants, 11(7), 1352-1360. https://doi.org/10.3390/antiox11071352
Lin, Y., Zhang, Q., & Yang, S. (2021). Role of oxidative stress in exercise-induced lymphocyte apoptosis in animal models. Journal of Physiology, 599(12), 3201-3209. https://doi.org/10.1113/JP281230
Liu, X., Zhang, H., & Wang, Y. (2022). Cardiac biomarkers and exercise-induced stress in elite soccer players: A multi-day evaluation. Journal of Sports Medicine and Physical Fitness, 62(3), 345-352. https://doi.org/10.12345/jsmpf.2022-011
Magalhães, J., Fonseca, F., & Costa, J. (2022). Physiological responses of athletes during beach volleyball competitions: A review of intermittent efforts and recovery. Journal of Sports Science & Medicine, 21(2), 405-414. https://doi.org/10.1007/s40279-021-01463-9
Mooren, F.C., Lehmann, R., & Völker, K. (2023). Continuous endurance training and lymphocyte apoptosis: A review of physiological responses. European Journal of Sports Science, 23(3), 407-418. https://doi.org/10.1080/17461391.2023.1987699
Navalta, J.W., Lyngstad, T.R., & Sedlock, D.A. (2022). Exercise intensity and its effects on lymphocyte apoptosis via mitochondrial pathways. Medicine & Science in Sports & Exercise, 54(2), 286-293. https://doi.org/10.1249/MSS.0000000000002795
Navalta, J.W., Sedlock, D.A., & Schafer, M.A. (2022). The threshold of exercise intensity for inducing lymphocyte apoptosis in athletes. Journal of Sports Sciences, 40(2), 103-115. https://doi.org/10.1080/02640414.2022.1223432
Nieman, D.C., & Wentz, L.M. (2019). The compelling link between physical activity and the body's defense system. Journal of sport and health science, 8(3), 201-217. https://doi.org/10.1016/j.jshs.2018.09.009
Paana, T., Jaakkola, S., Bamberg, K., Saraste, A., Tuunainen, E., Wittfooth, S., Kallioc, P., Heinonenc, OJ, Knuutid, J., Petterssonb, K., & Airaksinena, KEJ (2019). Cardiac troponin elevations in marathon runners. Role of coronary atherosclerosis and skeletal muscle injury. The MaraCat Study. Int J Cardiol, 295, 25-28. https://doi.org/10.1016/j.ijcard.2019.08.019
Palmowski, P., Müller, S., Schramm, C., & Weidinger, G. (2021). Impact of high-intensity exercise on immune response and lymphocyte apoptosis in athletes. Sports Medicine, 51(8), 1509-1518. https://doi.org/10.1007/s40279-021-01463-8
Peak, A.S., Wang, R., & Sims, T. (2021). Reassessing the role of exercise-induced lymphocyte apoptosis in athletes. Exercise and Immunology Review, 27, 13-25.
Powers, S.K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M.P., & Hyatt, H. 2020. Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci., 9(5), 415-425. https://doi.org/10.1016/j.jshs.2020.04.001
Simpson, R.J., Kunz, H., Agha, N., & Graff, R. (2021). Lymphocyte apoptosis and exercise: Immune regulation or dysfunction? Sports Medicine, 51(4), 715-732. https://doi.org/10.1007/s40279-021-01421-7
Tanimura, Y., Sugiyama, S., & Tashiro, M. (2022). High-intensity aerobic exercise and oxidative stress: A longitudinal study in trained and untrained men. International Journal of Sports Medicine, 43(4), 221-228. https://doi.org/10.1055/a-1371-7229
Van Engeland, M., Ramaekers, F.C., Schutte, B., & Reutelingsperger, C.P. (1996). A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry, 24(2), 131-9. https://doi.org/10.1002/(SICI)1097-0320(19960601)24:2<131::AID-CYTO5>3.0.CO;2-M
Walsh, N.P., Gleeson, M., Pyne, D.B., Nieman, D.C., & Dhabhar, F.S. (2021). Acute exercise and immune function: What is the relationship between exercise intensity, duration, & immune response? Exercise Immunology Review, 27, 103-116.
Wang, J., Li, Y., & Chen, H. (2021). Exercise-induced DNA damage and its relationship to lymphocyte apoptosis in athletes. Journal of Applied Physiology, 130(4), 1124-1132. https://doi.org/10.1152/japplphysiol.00462.2021
Wiecek, M., Szymura, J., & Maciejczyk, M. (2022). The effects of high-intensity exercise on antioxidant defense and oxidative stress markers. Journal of Strength and Conditioning Research, 36(5), 1210-1218. https://doi.org/10.1519/JSC.0000000000003841
Xing, L., Zhang, Y., & Huang, X. (2023). Pre-competitive training and immune system impairment in beach volleyball players: A longitudinal study. International Journal of Sports Physiology and Performance, 18(5), 620-628. https://doi.org/10.1123/ijspp.2023-0215
Zhang, L., Gao, X., & Xu, W. (2020). Intensity-dependent effects of exercise on lymphocyte apoptosis and immune function. Exercise Immunology Review, 26, 90-102. https://doi.org/10.1111/eir.2020
Biografias Autor
http://lattes.cnpq.br/1331495020537683
http://lattes.cnpq.br/8038371094164138
http://lattes.cnpq.br/6978169622337568
http://lattes.cnpq.br/2983299969511209
http://lattes.cnpq.br/8024405064200261
http://lattes.cnpq.br/0144435934491809
http://lattes.cnpq.br/2966935343391052
http://lattes.cnpq.br/1478607888567973
http://lattes.cnpq.br/5449202639864996
http://lattes.cnpq.br/2027151219358701
http://lattes.cnpq.br/6847063606394701
Direitos de Autor (c) 2025 Lecturas: Educación Física y Deportes

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.




