Apoptosis linfocitaria y estrés oxidativo tras una competición de corta duración de voleibol de playa en atletas de élite

Resumen

El ejercicio continuo, extenuante y prolongado tiene un impacto bien documentado en el sistema inmunitario. Este estudio tuvo como objetivo verificar si el vóleibol de playa puede causar apoptosis linfocitaria y un aumento concomitante del estrés oxidativo. Se evaluaron las células leucocitarias apoptóticas con anticuerpos anti-anexina V marcados con FITC y la detección de yoduro de propidio nuclear, la disponibilidad de peróxido de hidrógeno (H₂O₂) mediante la oxidación del diacetato de 2′,7′-diclorofluorescina y la concentración total de antioxidantes mediante el ensayo de poder antioxidante por reducción de hierro, antes y después de un torneo corto de vóleibol de playa con 20 atletas de élite. La mediana y el rango intercuartil de H₂O₂ en unidades arbitrarias aumentaron de 2.886 antes de la competición a 10.402 después de la competición en el grupo femenino, y de 2.711 a 11.154 en el grupo masculino. El porcentaje de células con apoptosis positiva aumentó de 0,7 a 3,9 en el grupo femenino y de 0,7 a 4,0 en el masculino. La concentración total de antioxidantes no varió, mientras que el colesterol HDL aumentó en ambos grupos al final de la competición. La apoptosis concomitante y el aumento de la producción de H₂O₂ en los linfocitos sugieren una apoptosis mediada por estrés oxidativo. La defensa antioxidante no se activa inmediatamente para restablecer el equilibrio redox de las células inmunitarias, mientras que una mejora en el perfil lipídico sugiere protección antioxidante para los vasos sanguíneos.

Palabras clave: Ejercicio físico, Apoptosis linfocitaria, Estrés oxidativo, Defensa antioxidante, Biomarcadores

Citas

Atamaniuk, J., Hohenwarter, O., & Müller, H. (2024). Exercise duration and intensity influence on lymphocyte apoptosis: A longitudinal analysis. Journal of Immunology Research, 76(2), 132-139. https://doi.org/10.1155/2024/4328910

Benzie, I.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem, 239(1), 70-6. https://doi.org/10.1006/abio.1996.0292

Bessa, A.L., Oliveira, V.N., & Sousa, R.A. de (2020). Exercise-induced cell death and regeneration: The role of training and recovery. European Journal of Applied Physiology, 120(1), 67-80. https://doi.org/10.1007/s00421-019-04273-8

Bessa, AL, Oliveira, VN, Agostini, GG, Oliveira, RJ, Oliveira, AC, White, GE, Wells, GD, Teixeira, DNS, & Espindola, FS (2016). Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress. J Strength Cond Res, 30(2), 311-9. https://doi.org/10.1519/JSC.0b013e31828f1ee9

Brites, F.D., Bonavita, A.G., & Iglesias, A. (2022). The role of HDL-c in oxidative stress regulation and inflammation during exercise. Antioxidants, 11(3), 310. https://doi.org/10.3390/antiox11030310

Brites, F., Martin, M., Guillas, I., & Kontush, A. (2017). Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clin., 8, 66-77. https://doi.org/10.1016/j.bbacli.2017.07.002

Gao, F., Yi, J., Yuan, J.Q., Xi, G.Y., & Tang, X.M. (2004). The cell cycle related apoptotic susceptibility to arsenic trioxide is associated with the level of reactive oxygen species. Cell Research, 14, 81-85. https://doi.org/10.1038/sj.cr.7290206

Gresslien, T., & Agewall, S. (2016). Troponin and exercise. Int J Cardiol, 221, 609-21. https://doi.org/10.1016/j.ijcard.2016.06.243

Harbort, CJ, Soeiro-Pereira, PV, von Bernuth, H., Kaindl, AM, Costa-Carvalho, BT, Condino-Neto, A., Reichenbach, J., Roesler, J., Zychlinsky, A., & Amúlico, B. (2015). Neutrophil oxidative burst activates ATM to regulate cytokine production and apoptosis. Nature Immunology, 16(5), 449-457. https://doi.org/10.1038/ni.3124

Hernáez, A., Farràs, M., & Blanco-Molina, A. (2023). The role of AMPK in the enhancement of HDL-c during exercise: New insights into cardiovascular health. Trends in Molecular Medicine, 29(1), 47-59. https://doi.org/10.1016/j.molmed.2022.08.003

Hirabayashi, Y., Taniuchi, S., & Kobayashi, Y. (1985). A quantitative assay of oxidative metabolism by neutrophils in whole blood using flow cytometry. J Immunol Methods, 82(2), 253-9. https://doi.org/10.1016/0022-1759(85)90357-6

Huang, C., Wang, Y., Zhao, X., & Zhang, F. (2024). Exercise-induced lymphocyte apoptosis: Mechanisms and implications for immune function. Journal of Applied Physiology, 137(4), 891-899. https://doi.org/10.1152/japplphysiol.00024.2024

Jackson, M.J., Stretton, C., & McArdle, A. (2020). Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: What do concentrations tell us about potential mechanisms? Redox Biol., 35, 101484. https://doi.org/10.1016/j.redox.2020.101484

Kruger, A., Meyer, R.M., & Wolf, P. (2023). Investigating oxidative stress-induced lymphocyte apoptosis through exercise in animal models. Oxidative Medicine and Cellular Longevity, Article 4763245. https://doi.org/10.1155/2023/4763245

Levada-Pires, A. C., Lima, T., & Durigan, J. (2022). Oxidative stress and immune cell function in endurance athletes. Antioxidants, 11(7), 1352-1360. https://doi.org/10.3390/antiox11071352

Lin, Y., Zhang, Q., & Yang, S. (2021). Role of oxidative stress in exercise-induced lymphocyte apoptosis in animal models. Journal of Physiology, 599(12), 3201-3209. https://doi.org/10.1113/JP281230

Liu, X., Zhang, H., & Wang, Y. (2022). Cardiac biomarkers and exercise-induced stress in elite soccer players: A multi-day evaluation. Journal of Sports Medicine and Physical Fitness, 62(3), 345-352. https://doi.org/10.12345/jsmpf.2022-011

Magalhães, J., Fonseca, F., & Costa, J. (2022). Physiological responses of athletes during beach volleyball competitions: A review of intermittent efforts and recovery. Journal of Sports Science & Medicine, 21(2), 405-414. https://doi.org/10.1007/s40279-021-01463-9

Mooren, F.C., Lehmann, R., & Völker, K. (2023). Continuous endurance training and lymphocyte apoptosis: A review of physiological responses. European Journal of Sports Science, 23(3), 407-418. https://doi.org/10.1080/17461391.2023.1987699

Navalta, J.W., Lyngstad, T.R., & Sedlock, D.A. (2022). Exercise intensity and its effects on lymphocyte apoptosis via mitochondrial pathways. Medicine & Science in Sports & Exercise, 54(2), 286-293. https://doi.org/10.1249/MSS.0000000000002795

Navalta, J.W., Sedlock, D.A., & Schafer, M.A. (2022). The threshold of exercise intensity for inducing lymphocyte apoptosis in athletes. Journal of Sports Sciences, 40(2), 103-115. https://doi.org/10.1080/02640414.2022.1223432

Nieman, D.C., & Wentz, L.M. (2019). The compelling link between physical activity and the body's defense system. Journal of sport and health science, 8(3), 201-217. https://doi.org/10.1016/j.jshs.2018.09.009

Paana, T., Jaakkola, S., Bamberg, K., Saraste, A., Tuunainen, E., Wittfooth, S., Kallioc, P., Heinonenc, OJ, Knuutid, J., Petterssonb, K., & Airaksinena, KEJ (2019). Cardiac troponin elevations in marathon runners. Role of coronary atherosclerosis and skeletal muscle injury. The MaraCat Study. Int J Cardiol, 295, 25-28. https://doi.org/10.1016/j.ijcard.2019.08.019

Palmowski, P., Müller, S., Schramm, C., & Weidinger, G. (2021). Impact of high-intensity exercise on immune response and lymphocyte apoptosis in athletes. Sports Medicine, 51(8), 1509-1518. https://doi.org/10.1007/s40279-021-01463-8

Peak, A.S., Wang, R., & Sims, T. (2021). Reassessing the role of exercise-induced lymphocyte apoptosis in athletes. Exercise and Immunology Review, 27, 13-25.

Powers, S.K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M.P., & Hyatt, H. 2020. Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci., 9(5), 415-425. https://doi.org/10.1016/j.jshs.2020.04.001

Simpson, R.J., Kunz, H., Agha, N., & Graff, R. (2021). Lymphocyte apoptosis and exercise: Immune regulation or dysfunction? Sports Medicine, 51(4), 715-732. https://doi.org/10.1007/s40279-021-01421-7

Tanimura, Y., Sugiyama, S., & Tashiro, M. (2022). High-intensity aerobic exercise and oxidative stress: A longitudinal study in trained and untrained men. International Journal of Sports Medicine, 43(4), 221-228. https://doi.org/10.1055/a-1371-7229

Van Engeland, M., Ramaekers, F.C., Schutte, B., & Reutelingsperger, C.P. (1996). A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry, 24(2), 131-9. https://doi.org/10.1002/(SICI)1097-0320(19960601)24:2<131::AID-CYTO5>3.0.CO;2-M

Walsh, N.P., Gleeson, M., Pyne, D.B., Nieman, D.C., & Dhabhar, F.S. (2021). Acute exercise and immune function: What is the relationship between exercise intensity, duration, & immune response? Exercise Immunology Review, 27, 103-116.

Wang, J., Li, Y., & Chen, H. (2021). Exercise-induced DNA damage and its relationship to lymphocyte apoptosis in athletes. Journal of Applied Physiology, 130(4), 1124-1132. https://doi.org/10.1152/japplphysiol.00462.2021

Wiecek, M., Szymura, J., & Maciejczyk, M. (2022). The effects of high-intensity exercise on antioxidant defense and oxidative stress markers. Journal of Strength and Conditioning Research, 36(5), 1210-1218. https://doi.org/10.1519/JSC.0000000000003841

Xing, L., Zhang, Y., & Huang, X. (2023). Pre-competitive training and immune system impairment in beach volleyball players: A longitudinal study. International Journal of Sports Physiology and Performance, 18(5), 620-628. https://doi.org/10.1123/ijspp.2023-0215

Zhang, L., Gao, X., & Xu, W. (2020). Intensity-dependent effects of exercise on lymphocyte apoptosis and immune function. Exercise Immunology Review, 26, 90-102. https://doi.org/10.1111/eir.2020

Biografía del autor/a

Amanda Christina Gonçalves do Carmo Gouveia,

http://lattes.cnpq.br/1331495020537683

Hélvio Oliveira Affonso,

http://lattes.cnpq.br/8038371094164138

Larissa Zambom Coco,

http://lattes.cnpq.br/6978169622337568

Alice Rosa Fernandes Bis,

http://lattes.cnpq.br/2983299969511209

Matheus Campos dos Santos,

http://lattes.cnpq.br/8024405064200261

Arthur Merigueti de Souza Costa,

http://lattes.cnpq.br/0144435934491809

Elis Aguiar Morra,

http://lattes.cnpq.br/2966935343391052

Divanei dos Anjos Zaniqueli,

http://lattes.cnpq.br/1478607888567973

Rafaela Aires,

http://lattes.cnpq.br/5449202639864996

Thiago de Melo Costa Pereira,

http://lattes.cnpq.br/2027151219358701

Bianca Prandi Campagnaro,

http://lattes.cnpq.br/6847063606394701

Publicado
2025-11-02
Cómo citar
Gouveia, A. C. G. do C., Affonso, H. O., Coco, L. Z., Bis, A. R. F., Santos, M. C. dos, Costa, A. M. de S., Morra, E. A., Zaniqueli, D. dos A., Aires, R., Pereira, T. de M. C., & Campagnaro, B. P. (2025). Apoptosis linfocitaria y estrés oxidativo tras una competición de corta duración de voleibol de playa en atletas de élite. Lecturas: Educación Física Y Deportes, 30(330), 113-128. https://doi.org/10.46642/efd.v30i330.7953
Sección
Artículos de Investigación