Recomendaciones de ejercicio físico con pérdida muscular y de peso por COVID-19. Una revisión narrativa

Resumen

Introducción: La pérdida muscular se asocia con la enfermedad por Coronavirus 2019 (COVID-19) sintomática mediante composiciones histológicas, corporales y análisis bioquímicos en mediciones de cuantificación. El mecanismo de lesión muscular en estos pacientes no está claro, pero la medición tomográfica es un resultado que aparece en los análisis de pacientes hospitalizados. Objetivo: El objetivo de este estudio es evaluar la influencia del COVID-19 en la pérdida de peso, caquexia y sarcopenia. Métodos: La revisión de la literatura se realizó de acuerdo con la Declaración SANRA (escala para la evaluación de la calidad de los artículos de revisión narrativa) utilizando las bases de datos PubMed, Lilacs, Google Scholar y Cochrane Library. Primero, para identificar publicaciones relevantes sobre COVID-19 y pérdida muscular y de peso, se utilizaron los términos de investigación combinados: (1) COVID-19 OR SARS-CoV-2 (2) caquexia OR pérdida de masa muscular e (3) ejercicio OR nutrición. Resultados y conclusiones: La información previa relacionada con citocinas, nutrición, tratamiento farmacológico, inactividad física durante los ingresos a unidades de cuidados intensivos (UCI), ventilación mecánica, se asocian con sarcopenia y caquexia en pacientes con COVID-19. En el área de estudio existe asociación entre los exámenes de imagen y el rendimiento en pruebas físicas, mediciones antropométricas y marcas sanguíneas de distrofia muscular.

Palabras clave: Atividade física, Tempestad de citocinas, Músculo esquelético, Desnutrición

Referencias

Asrani, P., & Hassan, M.I. (2021). SARS-CoV-2 mediated lung inflammatory responses in host: targeting the cytokine storm for therapeutic interventions. Molecular and Cellular Biochemistry, 476(2), 675-687. https://doi.org/10.1007/s11010-020-03935-z

Baethge, C., Goldbeck-Wood, S., & Mertens, S. (2019). SANRA—a scale for the quality assessment of narrative review articles. Res Integr Peer Rev, 4, 2-8. https://doi.org/10.1186/s41073-019-0064-8

Baracos, V.E., Martin, L., Korc, M., Guttridge, D.C., & Fearon, K.C.H. (2018). Cancer-associated cachexia. Nat Rev Dis Prim, 4, 17105. http://dx.doi.org/10.1038/nrdp.2017.105

Brandt, C., & Pedersen, B.K. (2010). The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol., 20258. https://doi.org/10.1155/2010/520258

Briguglio, M., Pregliasco, F.E., Lombardi, G., Perazzo, P., & Banfi, G. (2020). The malnutritional status of the host as a virulence factor for new coronavirus SARS-CoV-2. Front Med (Lausanne), 7, 146. https://doi.org/10.3389/fmed.2020.00146

Chen, N., Zhou, M., & Dong, X. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395, 507-513. https://doi.org/10.1016/s0140-6736(20)30211-7

Cheval, B., Sieber, S., Maltagliati, S., Millet, GP, Formánek, T., Chalabaev, A., Cullati, S., & Boisgontier, MP (2021). Muscle strength is associated with COVID-19 hospitalization in adults 50 years of age and older. medRxiv. https://doi.org/10.1101/2021.02.02.21250909

Garber, C.E. et al. (2011). American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc, 43(7), 1334-59. https://doi.org/10.1249/mss.0b013e318213fefb

Gentil, P., Lira, CAB, Coswig, V., Barroso, WKS, Vitorino, PVO, Ramirez-Campillo, R., Martins, W., & Souza1, D. (2021). Practical Recommendations Relevant to the Use of Resistance Training for COVID-19 Survivors. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.637590

Gibala, M.J., Gillen, J.B., & Percival, M.E. (2014). Physiological and health-related adaptations to low-volume interval training: Influences of nutrition and sex. 44(Suppl 2), S127-S137. https://doi.org/10.1007/s40279-014-0259-6

Gil, S., Jacob Filho, W., Shinjo, SK, Ferriolli, E., Busse, A.L., Avelino-Silva, TJ, Longobardi, I., Oliveira Júnior, GN, Swinton, P., Gualano, P., Roschel, H., & HCFMUSP COVID-19 Study Group (2021). Muscle Strength and Muscle Mass as Predictors of Hospital Length of Stay in Patients with Moderate to Severe COVID-19: A Prospective Observational Study. medRxiv. https://doi.org/10.1002/jcsm.12789

Gleeson, M., Bishop, N.C., Stensel, D.J., Lindley, M.R., Mastana, S.S., & Nimmo, M.A. (2011). The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nature reviews immunology, 11(9), 607-615. https://doi.org/10.1038/nri3041

Hughes, D.C., Ellefsen, S., & Baar, K. (2018). Adaptations to Endurance and Strength Training. Cold Spring Harb. Perspect Med, 8(6), a029769. https://doi.org/10.1101%2Fcshperspect.a029769

Jia, H. (2016). Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease. Shock, 46(3), 239-248. https://doi.org/10.1097/shk.0000000000000633

Jin, Y., Yang, H., & Ji, W., Wu, W., Chen, S., Zhang, W., & Duan, G. (2020). Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, 12, 372.

Krieger, J.W. (2010). Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-analysis. The Journal of Strength & Conditioning Research, 24(4), 1150-1159. https://doi.org/10.1519/jsc.0b013e3181d4d436

Leal, L.G., Lopes, M.A., Peres, S.B., & Batista Jr, M.L. (2021). Exercise Training as Therapeutic Approach in Cancer Cachexia: A Review of Potential Anti-inflammatory Effect on Muscle Wasting. Frontiers in Physiology, 11, 1769. https://doi.org/10.3389/fphys.2020.570170

Li, T., Zhang, Y., Gong, C., Wang, J., Liu, B., Shi, L., & Duan, J. (2020). Prevalence of malnutrition and analysis of related factors in elderly patients with COVID- 19 in Wuhan, China. Eur J Clin Nutr, 74(6), 871-875. https://doi.org/10.1038/s41430-020-0642-3

Mehta, P., McAuley, D.F., Brown, M., Sanchez, E., Tattersall, R.S., Manson, J.J., & HLH Across Speciality Collaboration, UK (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033-1034. https://doi.org/10.1016/s0140-6736(20)30628-0

Pedersen, B.K., & Saltin, B. (2015). Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports, 25(Suppl 3), 1-72. https://doi.org/10.1111/sms.12581

Queiroz Júnior, J.R.A., da Costa Pereira, J.P., Benjamim, R.A.C., Silva, N.O.L. da, Maria Eduarda de Paiva Silva, M.E. de P., & Ramiro, C.P.S.P. (2023). Relationship between sarcopenia and cachexia with prognostic markers of middle-aged and older inpatients with COVID-19: a case-control study. Eur Geriatr Med, 14(3), 217-526. https://doi.org/10.1007/s41999-023-00792-z

Salman, D., Vishnubala, D., Le Feuvre, P., Beaney, T., Korgaonkar, J., Majeed, A., & McGregor, AH (2021). Returning to physical activity after covid-19. BMJ, 372. https://doi.org/10.1136/bmj.m4721

Silva, A.B., Siqueira, S., Soares, WRA, Rangel, FS, Santos, NO, Freitas, AS, Silveira, PR, Tiwari, S., Alzahrani, KJ, Góes-Neto, A., Azevedo, V., Ghosh, P., & Barh, D. (2021). Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses, 13(4), 700. https://doi.org/10.3390/v13040700

Simpson, R.J., & Katsanis, E. (2020). The immunological case for staying active during the COVID-19 pandemic. Brain, behavior, and immunity, 87, 6-7. https://doi.org/10.1016/j.bbi.2020.04.041

Singh, S.K., & Singh, R. (2022). Cytokines and Chemokines in Cancer Cachexia and Its Long-Term Impact on COVID-19. Cells, 11, 579 https://doi.org/10.3390/cells11030579

Tieland, M., Trouwborst, I., & Clark, B.C. (2018). Skeletal muscle performance and ageing. Journal of cachexia, sarcopenia and muscle, 9(1), 3-19. https://doi.org/10.1002/jcsm.12238

Udina, C., Ars, J., Morandi, A., Vilaró, J., Cáceres, C., & Inzitari, M. (2021). Rehabilitation in Adult Post-COVID-19 Patients in Post-Acute Care with Therapeutic Exercise. The Journal of Frailty & Aging, 10(3), 297-300. https://doi.org/10.14283/jfa.2021.1

Virgens, I.P., Santana, N.M., Lima, S.C.V.C., & Fayh, A.P.T. (2020). Can COVID-19 be a risk for cachexia for patients during intensive care? Narrative review and nutritional recommendations. British Journal of Nutrition, 1-9. https://doi.org/10.1017%2FS0007114520004420

Welch, C. , Hassan-Smith, Z.K., Greig, C.A., Lord, J.M., & Jackson, T.A. (2018). Acute Sarcopenia Secondary to Hospitalisation - An Emerging Condition Affecting Older Adults. Aging Dis, 9(1), 151-164. https://doi.org/10.14336/ad.2017.0315

Welch, C., Greig, C.A., Masud, T., Wilson, D., & Jackson, T.A. (2020). COVID-19 and Acute Sarcopenia. Aging Dis., 11, 1345-1351. https://doi.org/10.14336/ad.2020.1014

Biografía del autor/a

Luiz Augusto da Silva,

http://lattes.cnpq.br/1257059349799963

Marcos Roberto Brasil,

http://lattes.cnpq.br/4466773213028214

Publicado
2023-12-02
Cómo citar
Silva, L. A. da, & Brasil, M. R. (2023). Recomendaciones de ejercicio físico con pérdida muscular y de peso por COVID-19. Una revisión narrativa. Lecturas: Educación Física Y Deportes, 28(307), 179-190. https://doi.org/10.46642/efd.v28i307.4029
Sección
Artículos de Revisión