Protective Effect of Aerobic Physical Training on Oxidative Stress Caused by Particulate Matter in Rats
Abstract
Introduction: Particulate matter (PM) is an atmospheric pollutant associated with many deleterious health effects. Oxidative stress is among these effects, that can result from a local inflammatory response to systemic damage to the organism. Studies indicate that when an individual is submitted to aerobic physical training, it generates an antioxidant protective effect that overcomes the damages caused by PM. Objective: Therefore, the aim of this study was to evaluate the influence of the particulate matter PM2.5 and PM10 on the oxidative stress parameters. Methods: The evaluation of the influence of PM on oxidative stress parameters was performed by the dosages of superoxide dismutase, catalase, glutathione peroxidase, and total antioxidant power in male Wistar rats not exposed to the particulate matter, with and without aerobic physical training, and exposed to PM2.5 and PM10, with and without aerobic physical training. This protocol lasted five weeks. Results: The antioxidant enzymes analyzed that presented significant differences were catalase, and glutathione peroxidase. Conclusions: From this research, it was possible to perceive that PM influences negatively on the oxidative stress and in the weight of the rats and that the aerobic exercise generates a protective effect against these damages.
References
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-7. Retrieved from: https://doi.org/10.1016/S0076-6879(84)05016-3
Arbex, M.A., Santos, U. de. P. Martins, L.C., Saldiva, P.H.N., Pereira, L.A.A., & Braga, A.L.F. (2012). A poluição do ar e o sistema respiratório. Jornal Brasileiro de Pneumologia, 38(5), 643-655. Retrieved from: https://doi.org/10.1590/S1806-37132012000500015
Banerjee, A.K., Mandal, A., Chanda, D., & Chakraborti, S. (2003). Oxidant, antioxidant and physical exercise. Molecular and cellular biochemistry, 253(1-2), 307-312. Retrieved from: https://doi.org/10.1023/A:1026034312124
Benzie, I.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76. Retrieved from: https://doi.org/10.1006/abio.1996.0292
Braga, A., Pereira, L.A.A., Böhm, G.M., & Saldiva, P. (2001). Poluição atmosférica e saúde humana. Revista USP, (51), 58-71. Retrieved from: https://doi.org/10.11606/issn.2316-9036.v0i51p58-71
Brook, R. D. (2008). Cardiovascular effects of air pollution. Clinical science, 115(6), 175-187. Retrieved from: https://doi.org/10.1042/CS20070444
Cançado, J.E.D., Braga, A., Pereira, L.A.A., Arbex, M.A., Saldiva, P.H.N., & Santos, U.D.P. (2006). Repercussões clínicas da exposição à poluição atmosférica. Jornal brasileiro de pneumologia, 32(Supl. 1), S5-S11. Retrieved from: https://doi.org/10.1590/S1806-37132006000800003
Castro, H.A. de, Gouveia, N., & Escamilla-Cejudo, J.A. (2003). Methodological issues of the research on the health effects of air pollution. Revista Brasileira de Epidemiologia, 6(2), 135-149. Retrieved from: https://doi.org/10.1590/S1415-790X2003000200007
Coelho, B.L. Rocha, L.G.C., Scarabelot, K.S., Scheffer, D.L., Ronsani, M.M., Silveira, P.C.L. et al. (2010). Physical exercise prevents the exacerbation of oxidative stress parameters in chronic kidney disease. Journal of Renal Nutrition, 20(3), 169-175. Retrieved from: https://doi.org/10.1053/j.jrn.2009.10.007
Dallarosa, J., Teixeira, E.C., Meira, l., & Wiegand, F. (2008). Study of the chemical elements and polycyclic aromatic hydrocarbons in atmospheric particles of PM10 and PM2. 5 in the urban and rural areas of South Brazil. Atmospheric Research, 89(1-2), 76-92. Retrieved from: https://doi.org/10.1016/j.atmosres.2007.12.004
Faraji, B., Kang, H.K., & Valentine, J.L. (1987). Methods compared for determining glutathione peroxidase activity in blood. Clinical chemistry, 33(4), 539-543. Retrieved from: https://doi.org/10.1093/clinchem/33.4.539
Fashi, M., Alinejad, H.A., & Mahabadi, H.A. (2015). The effect of aerobic exercise in ambient particulate matter on lung tissue inflammation and lung cancer. Iranian journal of cancer prevention, 8(3). Retrieved from: https://doi.org/10.17795/ijcp2333
Grochanke, B.S. (2015). Efeito da exposição crônica ao material particulado fino nos parâmetros de estresse oxidativo em pulmões de camundongos submetidos ao consumo de dieta hiperlipídica. Retrieved from: https://repositorio.ufcspa.edu.br/jspui/handle/123456789/151
Hoffman, J.B., Petriello, M.C., & Hennig, B. (2017). Impact of nutrition on pollutant toxicity: an update with new insights into epigenetic regulation. Reviews on environmental health, 32(1-2), 65-72. Retrieved from: https://doi.org/10.1515/reveh-2016-0041
Huttunen, K., Siponen, T., Salonen, I., Yli-Tuomi, T., Aurela, M., & Dufva, H. (2012). Low-level exposure to ambient particulate matter is associated with systemic inflammation in ischemic heart disease patients. Environmental research, 116, 44-51. Retrieved from: https://doi.org/10.1016/j.envres.2012.04.004
Institute of Laboratory Animal Resources, Commissions on Life Sciences, National Research Council (2003). The Guide for the Care and Use of Laboratory Animals. Association for Assessment and Accreditation of Laboratory Animal Care.
Kostrycki, I. M. (2016). Resposta anti-inflamatória do exercício físico agudo não ocorre em camundongos obesos expostos ao material particulado fino. Doctoral dissertation. Retrieved from: http://repositorio.ufcspa.edu.br/jspui/handle/123456789/311
Marmett, B. Nunes, R.B., Souza, K.S. de, Lago, P.D., & Rhoden, C.R. (2018). Aerobic training reduces oxidative stress in skeletal muscle of rats exposed to air pollution and supplemented with chromium picolinate. Redox Report, 23(1), 146-152. Retrieved from: https://doi.org/10.1080/13510002.2018.1475993
Martinelli, N., Olivieri, O., & Girelli, D. (2013). Air particulate matter and cardiovascular disease: a narrative review. European journal of internal medicine, 24(4), 295-302. Retrieved from: https://doi.org/10.1016/j.ejim.2013.04.001
Matt, F. Cole-Hunter, T., Donaire-Gonzalez, D., Kubesch, N., Martínez, D., & Carrasco-Turigas, D. (2016). Acute respiratory response to traffic-related air pollution during physical activity performance. Environment international, 97, 45-55. Retrieved from: https://doi.org/10.1016/j.envint.2016.10.011
National Research Council (2011). Guía para el cuidado y uso de animales de laboratorio. Chile: Ediciones UC.
Nesi, R.T., Souza, P.S. de, Santos, G.P. dos, Thirupathi, A., Menegali, B.T., Silveira, P.C.L. et al. (2016). Physical exercise is effective in preventing cigarette smoke-induced pulmonary oxidative response in mice. International journal of chronic obstructive pulmonary disease, 11, 603. Retrieved from: https://doi.org/10.2147/COPD.S93958
Osier, M., & Oberdörster, G. (1997). Intratracheal inhalation vs intratracheal instillation: differences in particle effects. Fundamental and Applied Toxicology, 40(2), 220-227. Retrieved from: https://doi.org/10.1093/toxsci/40.2.220
Pearson, J. F., Bachireddy, C., Shyamprasad, S., Goldfine, A.B., & Brownstein, J.S. (2010). Association between fine particulate matter and diabetes prevalence in the US. Diabetes care, 33(10), 2196-2201. Retrieved from: https://doi.org/10.2337/dc10-0698
Pleban, P. A., Munyani, A., & Beachum, J. (1982). Determination of selenium concentration and glutathione peroxidase activity in plasma and erythrocytes. Clinical Chemistry, 28(2), 311-316. Retrieved from: https://doi.org/10.1093/clinchem/28.2.311
Rao, X., Zhong, J., Brook, R.D., & Rajagopalan, S. (2018). Effect of particulate matter air pollution on cardiovascular oxidative stress pathways. Antioxidants & redox signaling, 28(9), 797-818. Retrieved from: https://doi.org/10.1089/ars.2017.7394
Rhoden, C. R., Lawrence, J., Godleski, J.J., & González-Flecha, B. (2004). N-acetylcysteine prevents lung inflammation after short-term inhalation exposure to concentrated ambient particles. Toxicological Sciences, 79(2), 296-303. Retrieved from: https://doi.org/10.1093/toxsci/kfh122
Samet, J.M., & Gruskin, S. (2015). Air pollution, health, and human rights. The Lancet Respiratory Medicine, 3(2), 98-100. Retrieved from: https://doi.org/10.1016/S2213-2600(14)70145-6
Silva, L.A., Ronsani, M.M., Souza, P.S., Severino, B.J., Fraga, D.B., & Streck, E.I. et al. (2010). Comparação do treinamento físico de quatro e oito semanas sobre atividade da cadeia transportadora de elétrons e marcadores de estresse oxidativo em fígado de camundongos. Revista brasileira de medicina do esporte, 16(2), 126-129. Retrieved from: http://dx.doi.org/10.1590/S1517-86922010000200010
Sorensen, M., Autrup, H., Møller, P., Hertel, O., Jensen, S.S., & Vinzents, P. (2003). Linking exposure to environmental pollutants with biological effects. Mutation Research/Reviews in Mutation Research, 544(2-3), 255-271. Retrieved from: https://doi.org/10.1016/j.mrrev.2003.06.010
Strak, M., Boogaard, H., Meliefste, K., Oldenwening, M., Zuurbier, M., & Brunekreef, B. et al. (2010). Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occupational and environmental medicine, 67(2), 118-124. Retrieved from: http://dx.doi.org/10.1136/oem.2009.046847
Vollaard, N. B., Shearman, J.P., & Cooper, C.E. (2005). Exercise-induced oxidative stress. Sports medicine, 35(12), 1045-1062. Retrieved from: https://doi.org/10.2165/00007256-200535120-00004
WHO Europe (2013). World Health Organization. Health effects of particulate matter. Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK361805/
Wong, J. (2016). Lung inflammation caused by inhaled toxicants: a review. International journal of chronic obstructive pulmonary disease, 11, 1391. Retrieved from: https://doi.org/10.2147/COPD.S106009
Yuan, X., Wang, Y., Li, L., Zhou, W., Tian, D. & Lu, D. et al. (2016). PM 2.5 induces embryonic growth retardation: Potential involvement of ROS-MAPKs-apoptosis and G0/G1 arrest pathways. Environmental toxicology, 31(12), 2028-2044. Retrieved from: https://doi.org/10.1002/tox.22203
Zhou, W., Tian, D., He, J., Zhang, L., Tang, X., Zhang, L. et al. (2017). Exposure scenario: another important factor determining the toxic effects of PM2.5 and possible mechanisms involved. Environmental pollution, 226, 412-425. Retrieved from: https://doi.org/10.1016/j.envpol.2017.04.010
Copyright (c) 2020 Lecturas: Educación Física y Deportes
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.