Previsão de Ouro em partidas de League of Legends. Análise de variáveis econômicas
Resumo
Essa pesquisa faz uso de dados de partidas do cenário competitivo de League of Legends no Brasil, de forma a realizar uma previsão da quantidade total de ouro gerada, tal previsão junto a uma análise exploratória é usada para aferir o uso do valor total de ouro como métrica de eficiência dos jogadores, usando dados dos times presentes no campeonato e seus jogadores. Através de uma análise exploratória, analisando correlações entre as variáveis e também a aplicação do algoritmo de regressão de mínimos quadrados ordinários, o objetivo deste trabalho é realizar uma regressão linear a fim de verificar a importância das variáveis: kills, assists, minionskills, monsterkills e towers, na obtenção de ouro durante as partidas. São identificadas nesse estudo relações lineares e não lineares para determinadas variáveis selecionadas, separadas entre os dados dos times de forma agregada e dados dos jogadores, divididos de acordo com a posição em que cada um joga para prever a quantidade de ouro.
Referências
Ani, R., Harikumar, V., Devan, A.K., e Deepa, O.S. (2019). Victory prediction in League of Legends using Feature Selection and Ensemble methods. In 2019 International Conference on Intelligent Computing and Control Systems (ICCS). IEEE, 74-77. https://ieeexplore.ieee.org/abstract/document/9065758
Araujo, V., Rios, F., e Parra, D. (2019). Data mining for item recommendation in MOBA games. In Proceedings of the 13th ACM Conference on Recommender Systems, 393-397. https://dl.acm.org/doi/abs/10.1145/3298689.3346986
Bahrololloomi, F., Sauer, S., Klonowski, F., Horst, R., e Dörner, R. (2022). A Machine Learning based Analysis of e-Sports Player Performances in League of Legends for Winning Prediction based on Player Roles and Performances. In VISIGRAPP (2: HUCAPP), 68-76. https://www.scitepress.org/Papers/2022/108959/108959.pdf
Bailey, K. (2020). Statistical Learning for Esports Match Prediction [Dissertação de Mestrado, California State Polytechnic University]. https://scholarworks.calstate.edu/downloads/kw52jb221
Block, S., e Haack, F. (2021). eSports: a new industry. In SHS Web of Conferences. EDP Sciences, 04002. https://doi.org/10.1051/shsconf/20219204002
Borowy, M., e Jin, D.J. (2013). Pioneering eSport: the experience economy and the marketing of early 1980s arcade gaming contests. International Journal of Communication, 7, 21. https://ijoc.org/index.php/ijoc/article/view/2296
Cruz, A.C.S., Rêgo, T.G. do, Filho, T. de M., e Malheiros, Y. (2021). League of Legends: An Application of Classification Algorithms to Verify the Prediction Importance of Main In-Game Variables. In Anais Estendidos do XX Simpósio Brasileiro de Jogos e Entretenimento Digital. SBC, 329-333. https://sol.sbc.org.br/index.php/sbgames_estendido/article/view/19662
Eaton, J.A., Mendonça, D.J., e Sangster, M.-D.D. (2018). Attack, Damage and Carry: Role Familiarity and Team Performance in League of Legends. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 130-134. SAGE Publications. https://journals.sagepub.com/doi/abs/10.1177/1541931218621030
Figueiredo Filho, D., Nunes, F., Rocha, E., Santos, M., Batista, M., e Alexandre Junior, J. (2011). O que fazer e o que não fazer com a regressão: pressupostos e aplicações do modelo linear de Mínimos Quadrados Ordinários (MQO). Revista Política Hoje, 20(1). https://doi.org/10.7910/DVN/LU5U7H
Godtsfriedt, J., e Cardoso, F.L. (2021). E-Sports: uma prática esportiva atual. Motrivivência, 33(64), 1-14. https://doi.org/10.5007/2175-8042.2021.e80001
Hodge, V.J., Devlin, S., Sephton, N., Block, F., Cowling, P.I., e Drachen, A. (2019). Win prediction in multiplayer esports: Live professional match prediction. IEEE Transactions on Games, 13(4), 368-379. https://ieeexplore.ieee.org/abstract/document/8906016
Kou, Y., e Nardi, B.A. (2014). Governance in League of Legends: A hybrid system. FDG, 7(1), 9. https://www.researchgate.net/publication/309738489
Krueger, J.S., e Lewis-Beck, M.S. (2008). Is OLS dead? The Political Methodologist, 15(2), 2-4. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6ec7536a138ea1350efbf73c6a2f714a56a72d48
Macedo, T., e Falcão, T. (2019). E-Sports, herdeiros de uma tradição. Intexto, 246-267. https://seer.ufrgs.br/intexto/article/view/83818
Mora-Cantallops, M., e Sicilia, M.-Á. (2018). MOBA games: A literature review. Entertainment computing, 26, 128-138. https://www.sciencedirect.com/science/article/abs/pii/S1875952117300149
Oracle Elixir (2023). Oracle Elixir. https://oracleselixir.com
Reitman, J.G., Anderson-Coto, M.J., Wu, M., e Lee, J.S. (2020). Esports research: A literature review. Games and Culture, 15(1), 32-50. https://www.researchgate.net/publication/332444877
Tuzcu, A., Ay, E.G., Uçar, A.U., e Kılınç, D. (2023). A Machine Learning Based Predictive Analysis Use Case For eSports Games. Artificial Intelligence Theory and Applications, 3(1), 25-35. https://www.researchgate.net/publication/373545790
Rubleske, J., Fletcher, T., e Westerfeld, B. (2020). E-Sports Analytics: A Primer and Resource for Student Research Projects and Lesson Plans. Journal of Instructional Pedagogies, 23. https://eric.ed.gov/?id=EJ1242004
Silva, A.L.C., Pappa, G.L., e Chaimowicz, L. (2018). Continuous outcome prediction of league of legends competitive matches using recurrent neural networks. SBC-Proceedings of SBCGames, 2179-2259. https://sbgames.org/sbgames2018/files/papers/ComputacaoShort/188226.pdf
Singh, N. (2020). Sport analytics: a review. The International Technology Management Review, 9, 64-69. https://link.springer.com/article/10.2991/itmr.k.200831.001
Biografias Autor
http://lattes.cnpq.br/4894314646656132
http://lattes.cnpq.br/5028921287123224
Direitos de Autor (c) 2026 Lecturas: Educación Física y Deportes

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



