Advances in the Area of Orthopedic Physiotherapy Accordingly to the Use of Technology with the Kinect System
An Integrative Review
Abstract
Introduction: Kinect is a fast and inexpensive technology for motion analysis that can assess exercises and range of motion, intended for assessment and rehabilitation of orthopedic patients. Therefore, it is of great importance to study the subject, since it can add to the physical therapy treatment. Objective: Analyze the literature that discussed on technological advances in the field of orthopedic physiotherapy through the Kinect system. Materials and Methods: This is an integrative review study, seeking high sensitivity. After using inclusion and exclusion criteria, it was possible to reach a total of 11 (eleven) articles, which are discussed throughout the text, in order to respond to the research problem. These articles were published between the years 2014 to 2022. Results: According to the selected studies, it can be concluded that the Kinect has been shown to be fundamental for the monitoring and recovery of patients who undergo orthopedic treatment, above all, because it presents high reliability and speed in the images achieved, which guarantee the adjustment of activities. It is alsoclarified that the Kinect minimizes the chances of taking the patient to the office, since with the appropriate tools, telemedicine is presented with quality. Conclusion: The technology allied to Kinect has been a very valuable tool for the area of orthopedic physiotherapy, since it enriches the existing methods, making it a promising tool.
References
Bassett, S.F. (2003). The assessment of patient adherence to physiotherapy rehabilitation. NZ Journal of Physiotherapy, 31(2), 60-66. https://www.researchgate.net/publication/284411604
Beshara, P., Chen, J.F., Read, A.C., Lagadec, P., Wang, T., e Walsh, W.R. (2020). The Reliability and Validity of Wearable Inertial Sensors Coupled with the Microsoft Kinect to Measure Shoulder Range-of-Motion. Sensors, 20(24), 7238. https://doi.org/10.3390/s20247238
Castillo-Martínez, I.D., Bremer-Aztudillo, A.L., Velázquez-Marmolejo, L., Moreno-González, A.M., e Belmont-Sánchez, J. (2020). Rehabilitación con realidad virtual en pacientes pediátricos con hemofilia. Estudio retrospectivo / Virtual reality rehabilitation in paediatric patients with hemophilia. Retrospective study. Acta Ortop Mex, 34(5), 298-302. https://pubmed.ncbi.nlm.nih.gov/33634633/
Castro, A.P.G., Pacheco, J.D., Lourenço, C., Queirós, S., Moreira, A.H.J., Rodrigues, N.F., e Vilaça, J.L. (2017). Avaliação da postura da coluna vertebral usando o Microsoft Kinect™: Um estudo de caso preliminar com 98 voluntários. Revista Biomédica do Porto, 2(1), 18-22. http://dx.doi.org/10.1016/j.pbj.2016.11.004
Çubukçu, B., Yüzgeç, U., Zileli, R., e Zileli, A. (2020). Reliability and validity analyzes of Kinect V2 based measurement system for shoulder motions. Med Eng Phy, 76, 20-31. https://doi.org/10.1016/j.medengphy.2019.10.017
Da Gama, A., Fallavollita, P., Teichrieb, V., e Navab, N. (2015). Motor Rehabilitation Using Kinect: A Systematic Review. Games for Health Jornal, 4(2), 123-135. http://dx.doi.org/10.1089/g4h.2014.0047
Fernández-Baena, A., Susin, A., e Lligadas, X. (2012). Validação biomecânica dos movimentos articulares da parte superior e inferior do corpo de dados de captura de movimento Kinect para tratamentos de reabilitação. Em: Quarta conferência internacional sobre redes inteligentes e sistemas colaborativos (pp. 656-661). IEEE.
Gonzalez, D., Imbiriba, L., e Jandre, F. (2019). As estratégias posturais podem ser avaliadas com o Microsoft Kinect v2? Em: Congresso Mundial de Física Médica e Engenharia Biomédica 2018 (pp. 725-728). Springer.
Guzmán, C.H., Blanco, A., Brizuela, J.A., e Gómez, F.A. (2017). Robust control of a hip–joint rehabilitation robot. Biomedical Signal Processing and Control, 35, 100-109. https://doi.org/10.1016/j.bspc.2017.03.002
Hannink, E., Shannon, T., Barker, KL, e Dawes, H. (2019). The reliability and reproducibility of sagittal spinal curvature measurement using the Microsoft Kinect V2. J Back Musculoskelet Rehabil, 33 (2), 295-301. https://doi.org/10.3233/bmr-191554
Hannink, E., Shannon, T., Dawes, H., e Barker, K. (2020a). Measurement of sagittal spine curvature: comparing the Kinect depth camera to the flexicurve and digital inclinometers in a clinical population. Physioterapy, 107, e21. https://doi.org/10.1016/j.physio.2020.03.031
Hannink, E., Shannon, T., Dawes, H., e Barker, K. (2020b). The validity of the kinect sensor for the measurement of sagittal spine curvature against the gold standard lateral spinal radiograph. Physioterapy, 107, e28-e29. http://dx.doi.org/10.1016/j.physio.2020.03.040
Hannink, E., Dawes, H., Shannon, T. M., e Barker, K.L. (2022). Validity of sagittal thoracolumbar curvature measurement using a non-radiographic surface topography method. Spine Deformity, 10(6), 1299-1306. https://doi.org/10.1007/s43390-022-00538-0
Hsieh, WM, Chen, CC, Wang, SC, Tan, SY, Hwang, YS, Chen, SC, Lai, JS, e Chen, YL (2014). Virtual reality system based on Kinect for the elderly in fall prevention. Randomized Controlled Trial, 22(1), 27-36. https://doi.org/10.3233/thc-130769
Jales, M.R.M., Mota, S.B., de Andrade, M.F., do Nascimento, E.G.C., e de Medeiros Fernandes, T.A.A. (2022). Lymphtaping® and breast cancer-related lymphoedema: an integrative review. Research, Society and Development, 11(2), e28411224973-e28411224973. https://doi.org/10.33448/rsd-v11i2.24973
Kairy, D., Tousignant, M., Leclerc, N., Côté, A.M., Levasseur, M., e Telage Pesquisadores (2013). The Patient’s Perspective of in-Home Telerehabilitation Physiotherapy Services Following Total Knee Arthroplasty. Int J Environ Res Public Health, 10(9), 3998-4011. https://doi.org/10.3390/ijerph10093998
Królikowska, A., Maj, A., Dejnek, M., Prill, R., Skotowska-Machaj, A., e Kołcz, A.
(2022). Wrist motion assessment using Microsoft Azure Kinect DK: A reliability study in healthy individuals. Adv Clin Exp Med, 33(2), 203-209. https://doi.org/10.17219/acem/152884
Kumar, Y., Yen, SC, Tay, A., Lee, W., Gao, F., Zhao, Z., Li, J., Hon, B., Xu, TTM., Cheong, A., Koh, K., Ng, YS, Chew, E., e Koh, G. (2015). Wireless wearable range-of-motion sensor system for upper and lower extremity joints: a validation study. Healthc Technol Lett, 2(1), 12-17. https://doi.org/10.1049/htl.2014.0100
Kuroda, Y., Young, M., Shoman, H., Punnoose, A., Norrish, AR, e Khanduja, V. (2021). Advanced rehabilitation technology in orthopaedics-a narrative review. Int Orthop., 45(8), 1933-1940. https://doi.org/10.1007/s00264-020-04814-4
Lee, SH, Yoon, C., Chung, SG, Kim, HC, Kwak, Y., Park, HW, e Kim, K. (2015). Measurement of Shoulder Range of Motion in Patients with Adhesive Capsulitis Using a Kinect. PloS One, 10 (6), e0129398. https://doi.org/10.1371/journal.pone.0129398
Li, S., Pathirana, P.N., e Caelli, T. (2014). Multi-kinect skeleton fusion for physical rehabilitation monitoring. Annu Int Conf IEEE Eng Med Biol Soc., 5060-3. https://doi.org/10.1109/embc.2014.6944762
Mateo, F., Carrasco, JJ, Aguilar-Rodríguez, M., Soria-Olivas, E., Bonanad, S., Querol, F., e Pérez-Alenda, S. (2019). Assessment of Kinect V2 for elbow range of motion estimation in people with haemophilia using an angle correction model. Haemophilia, 25(3), e165-e173. https://doi.org/10.1111/hae.13744
Mateo, F., Soria-Olivas, E., Carrasco, J.J., Bonanad, S., Querol, F., e Pérez-Alenda, S. (2018). HemoKinect: A Microsoft Kinect V2 Based Exergaming Software to Supervise Physical Exercise of Patients with Hemophilia. Sensors, 18(8), 2439. https://doi.org/10.3390/s18082439
Mentiplay, B.F., Hasanki, K., Perraton, L.G., Pua, Y.H., Charlton, P.C., e Clark, R.A. (2018). Three-dimensional assessment of squats and drop jumps using the Microsoft Xbox One Kinect: Reliability and validity. Journal of sports sciences, 36(19), 2202-2209. https://doi.org/10.1080/02640414.2018.1445439
Moreno, F.Á., Merchán-Baeza, J.A., González-Sánchez, M., González-Jiménez, J., e Cuesta-Vargas, A.I. (2017). Experimental Validation of Depth Cameras for the Parameterization of Functional Balance of Patients in Clinical Tests. Sensors, 17(2), 424. https://doi.org/10.3390/s17020424
Otte, K., Kayser, B., Mansow-Model, S., Verrel, J., Paul, F., Brandt, AU, e Schmitz-Hübsch, T. (2016). Accuracy and Reliability of the Kinect Version 2 for Clinical Measurement of Motor Function. PloS One, 11 (11), e0166532. https://doi.org/10.1371/journal.pone.0166532
Pastora-Bernal, J.M., Martín-Valero, R., Barón-López, F.J., e García-Gómez, O. (2017). Effectiveness of telerehabilitation programme following surgery in shoulder impingement syndrome (SIS): Study protocol for a randomized controlled non-inferiority trial. Trials, 18(1), 1-11. https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-017-1822-x
Quek, J., Brauer, S.G., Treleaven, J., e Clark, R.A. (2015). The use of the Microsoft Kinect to measure thoracic kyphosis. Physiotherapy, 101, e1243-e1244. http://dx.doi.org/10.1016/j.physio.2015.03.1144
Shannon, T., e Chockalingam, N. (2012). Investigation of a low cost method to quantify cosmetic defect. Stud Health Technol Inform., 176, 282-5. https://pubmed.ncbi.nlm.nih.gov/22744509/
Uhm, KE, Lee, S., Kurillo, G., Han, JJ, Yang, JH, Yoo, YB, e Lee, J. (2020). Usefulness of Kinect sensor-based reachable workspace system for assessing upper extremity dysfunction in breast cancer patients. Supportive Care in Cancer, 28 (2), 779-786. https://doi.org/10.1007/s00520-019-04874-2
Wochatz, M., Tilgner, N., Mueller, S., Rabe, S., Eichler, S., John, M., Völler, H, e Mayer, F. (2019). Reliability and validity of the Kinect V2 for the assessment of lower extremity rehabilitation exercises. Gait Posture, 70, 330-335. https://doi.org/10.1016/j.gaitpost.2019.03.020
Author Biographies
http://lattes.cnpq.br/9336425442388311
http://lattes.cnpq.br/1545549464623271
http://lattes.cnpq.br/3194269468143745
https://lattes.cnpq.br/9376240448662474
http://lattes.cnpq.br/3612466634731947
Copyright (c) 2023 Lecturas: Educación Física y Deportes
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.