Influence of music therapy in the understanding of spoken language in users of cochlear implant

Abstract

Background: The cochlear implant (CI) is one of the most important recent technological advances in healthcare. Even with this new technology, participants continue to have complaints regarding the performance of the CI. Auditory training is a procedure that provides the individual with performance improvements in auditory skills. One possible auditory training is music therapy. Objective: To verify the influence of music therapy on spoken language comprehension in participants who are post-lingual users of cochlear implants. Design and setting: The current research is a cross-sectional study. It was carried out in a university public institution, with a tertiary healthcare ranking. Method: Nine post-lingual implanted individuals participated in this study (average age: 52 years). These individuals had ten music therapy sessions, conducted once a week. The sentence comprehension test was used for hearing evaluation. All participants underwent a homework moment before the music therapy, and they were evaluated at three different times. Results: We observed significant improvement in understanding spoken sentences after music therapy. Conclusion: Music therapy was a useful tool for improving auditory and speech comprehension skills in post-lingual users of cochlear implants.

Keywords: Hearing, Hearing loss, Cochlear implants, Adult, Music therapy, Therapy

References

Bayazit, Y., Kosaner, J., Celenk, F., Somdas, M., Yilmaz, I., Altin, G. et al. (2016). Auditory brainstem implant in postlingual post meningitic patients. Laryngoscope, 126,1889-1892. https://doi: 10.1002/lary.25731

Bilger, R.C., Black, F.O., Hopkinson, N.T. (1977). Research plan for evaluating participants presently fitted with implanted auditory prostheses. Annals of Otology, Rhinology & Laryngology, 86, 21-24. https://doi.org/10.1177/00034894770860S303

Breitling, D., Guenther, W., Rondot, P. (1987). Auditory perception of music measured by brain electrical activity mapping. Neuropsychologia, 25(5), 765-774. https://doi: 10.1016/0028-3932(87)90114-x.

Francis, H.W., Yeagle, J.A., Thompson, C.B. (2015). Clinical and psychosocial risk factors of hearing outcome in older adults with cochlear implants. Laryngoscope, 125, 695-702. https://doi.org/10.1002/lary.24921

Gfeller, K., Chris, A., Knust, J.F., Witt, S.A., Murray, K.T. (2000). Musical back-grounds, listening habits, and aesthetic enjoyment of adult cochlear implant recipients. Journal of the American Academy of Audiology, 11(7),390-406.

Gfeller, K., Guthe, E., Driscoll, V., Brown, C.J. (2015). A preliminary report of music-based training for adult cochlear implant users: rationales and development. Cochlear Implants, 16 (3), S22-31. https://doi:10.1179/1467010015Z.000000000269.

Glasberg, B.R., Moore, B.C.J., Bacon, S.P. (1987). Gap detection and masking in hearing-impaired and normal-hearing participants. Journal of the Acoustical Society of America, 81(5), 1546-56.

Griffiths, T.D., Warren, J.D. (2002). The planum temporale as a computational hub. Trends Neuroscience, 25(7), 348-53. https://doi: 10.1016/S0166-2236(02)02191-4.

Gutgsell, K.J., Schluchter, M., Margevicius, S., Degolia, P., McLaughlin, B., Harris, M. et al. (2013). Music therapy reduces pain in palliative care participants: a randomized controlled trial. Journal of Pain and Symptom Management, 45(5),822-831. https://doi: 10.106/j.jpainsymman.2012.05.008

Hanekom, J.J., Shannon, R.V. (1998). Gap detection as a measure of electrode interaction in cochlear implants. Journal of the Acoustical Society of America, 104(4), 2372-2384.

Herholz, S.C., Zatorre, R.J. (2012). Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron,76(3),486-502. https://doi: 10.106/j.neuron.2012.10.011

Johannesen, P.T., Pérez-Gozález, P., Kalluri, S., Blanco, J.L., Lopes-Poveda, E.A. (2016). The influence of cochlear mechanical dysfunction, temporal processing deficits, and age on the intelligibility of audible speech in noise for hearing-impaired listeners. Trends in Hearing, 7,20. https://doi: 10.1177/2331216516641055

Kraus, N., Skoe, E., Parbery-Clark, A., Ashley, R. (2009). Experience-induced malleability in neural encoding of pitch, timbre, and timing-implications for language and music. Annals of the New York Academy of Sciences, 1169,543-57. https://doi: 10.1111/j.1749-6632.2009.04549.x

Leigh, J.R., Dettman, S.J., Dowell, R.C. (2016). Evidence based guidelines for recommending cochlear implantation for young children: audiological criteria and optimizing age at implantation. International Journal of Audiology, 55(2),S9-S18.

Limb, C.J., Roy, A.T. (2014). Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hearing Research,308:13-26. https://doi: 10.1016/j.heares.2013.04.009.

Loizou, P.C. (1999). Introduction to cochlear implants. IEEE Engineering in Medicine and Biology Magazine, 18(1),32-42. https://doi: 10.1109/51.740962.

Looi, V., Gfeller, K., Driscoll, V. (2012). Music appreciation and training for cochlear implant recipients: a review. Seminars in Hearing, 33(4), 307-34. https://doi: 10.1055/s-0032-1329222.

McDermott, H.J. (2004). Music perception with cochlear implants: a review. Trends in Amplification, 8(2), 49-82. https://doi: 10.1177/108471380400800203.

Mitani, C., Nakata, T., Trehub, S.E., Kanda, Y., Kumagami, H., Takasaki, K., Miyamoto, I., Takahashi, H. (2007). Music recognition, music listening, and word recognition by deaf children with cochlear implants. Ear and Hearing, 28 (2),29S-33S. https://doi:10.1097/AUD.0b013e318031547a.

Moore, D.R., Amitay, S. (2007). Auditory training: rules and applications. Seminars in Hearing, 28(2),99-109. https://doi: 10.1055/s-2007-973436.

Nadol, J.B. (1997). Patterns of neural degeneration in the human cochlea and auditory nerve: Implications for cochlear implantation. Otolaryngology Head Neck Surgery, 117,220-8.

Patterson, R.D., Uppenkamp, S., Johnsrude, I.S., Griffiths, T.D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4),767-76. https://doi: 10.1016/S0896-6273(02)01060-7.

Peretz, I., Champod, A.S., Hyde, K. (2003). Varieties of musical disorders. The Montreal Battery of Evaluation of Amusia. Annals of the New York Academy of Sciences, 999, 58-75. https://doi: 10.1196/annals.1284.006.

Polk, M., Kertesz, A. (1993). Music and language in degenerative disease of the brain. Brain and Cognition, 22(1), 98-117. https://doi: 10.1006/brcg.1993.1027.

Raglio, A., Bellelli, G., Mazzola, P., Bellandi, D., Giovagnoli, A.R., Farina, E. et al. (2012). Music, music therapy and dementia: a review of literature and recommendations of the Italian Psychogeriatric Association. Maturitas, 72(4),305-10. https://doi:10.1016/j.maturitas.2012.05.016

Rask-Andersen, H., Liu, M. (2015). Auditory nerve preservation and regeneration in man: Relevance for cochlear implant. Neural Regeneration Research, 10, 710. https://doi:10.4103/1673-5374.156963

Satoh, M., Takeda, K., Nagata, K., Shimosegawa, E., Kuzuhara, S. (2006). Positron-emission tomography of brain regions activated by recognition of familiar music. American Journal Neuroadiology, 27(5), 1101-6.

Scaranello, C.A. (2005). Reabilitação auditiva pós implante coclear. Medicina (Ribeirão Preto), 38(3/4),273-8. https://doi: 10.11606/issn.2176-7262.v38i3/4p273-278.

Strait, D.L., Kraus, N., Skoe, E., Ashley, R. (2009). Musical experience promotes subcortical efficiency in processing emotional vocal sounds. Annals of the New York Academy of Sciences, 1169,209-13. https://doi: 10.1111/j.1749-6632.2009.04864.x.

Tanamati, L.F. (2011). Audição e inteligibilidade da fala de crianças após 10 anos da cirurgia de implante coclear [tese]. São Paulo: Universidade de São Paulo. https://doi:10.11606/T.5.2012.tde-11052012-133542.

Thaut, M.H., McIntosh, G.C. (2010). How music helps to heal the injured brain: therapeutic use crescendos thanks to advances in brain science. Cerebrum. Retrieved on February 02, 2020 from https://dana.org/article/how-music-helps-to-heal-the-injured-brain/

Thaut, M.H., Trimarchi, P.D., Parsons, L.M. (2014). Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo and pattern. Brain Sciences, 4(2),428-52. https://doi: 10.3390/brainsci4020428.

Valente S.L.O. (1998). Elaboração de listas de sentenças construídas na língua portuguesa [dissertação]. São Paulo: Pontifícia Universidade Católica.

Warren, J.D., Uppenkamp, S., Patterson, R.D., Griffiths, T.D. (2003). Separating pitch chroma and pitch height in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 100(17), 10038-42. https://doi: 10.1073/pnas.1730682100.

Yucel, E., Sennaroglu, G., Belgin, E. (2009). The family oriented musical training for children with cochlear implants: speech and musical perception results of two years follow-up. International Journal of Pediatric Otorhinolaryngology, 73(7),1043-52. https://doi: 10.1016/j.ijporl.2009.04.009.

Published
2020-05-20
How to Cite
de Lima, J. P., & Schochat, E. (2020). Influence of music therapy in the understanding of spoken language in users of cochlear implant. Lecturas: Educación Física Y Deportes, 25(264), 32-46. https://doi.org/10.46642/efd.v25i264.1576
Section
Research Articles