Previsión de Oro en partidas de League of Legends. Análisis de variables económicas

Resumen

Esta investigación utiliza datos de partidas competitivas de League of Legends en Brasil para predecir la cantidad total de oro generado. Esta predicción, junto con un análisis exploratorio, se utiliza para evaluar el uso del valor total del oro como métrica de la eficiencia de los jugadores, utilizando datos de los equipos presentes en el campeonato y sus jugadores. Mediante el análisis exploratorio, examinando las correlaciones entre variables y aplicando el algoritmo de regresión de mínimos cuadrados ordinarios, el objetivo de este trabajo es realizar una regresión lineal para verificar la importancia de las variables: bajas, asistencias, habilidades de súbditos, bajas de monstruos y torres en la obtención de oro durante las partidas. En este estudio, se identifican relaciones lineales y no lineales para ciertas variables seleccionadas, separadas entre datos agregados de equipos y datos de jugadores, divididos según la posición de cada jugador, para predecir la cantidad de oro.

Palabras clave: Análisis de e-Sports, Aprendizaje automático, Minería de datos, e-Sports

Citas

Ani, R., Harikumar, V., Devan, A.K., e Deepa, O.S. (2019). Victory prediction in League of Legends using Feature Selection and Ensemble methods. In 2019 International Conference on Intelligent Computing and Control Systems (ICCS). IEEE, 74-77. https://ieeexplore.ieee.org/abstract/document/9065758

Araujo, V., Rios, F., e Parra, D. (2019). Data mining for item recommendation in MOBA games. In Proceedings of the 13th ACM Conference on Recommender Systems, 393-397. https://dl.acm.org/doi/abs/10.1145/3298689.3346986

Bahrololloomi, F., Sauer, S., Klonowski, F., Horst, R., e Dörner, R. (2022). A Machine Learning based Analysis of e-Sports Player Performances in League of Legends for Winning Prediction based on Player Roles and Performances. In VISIGRAPP (2: HUCAPP), 68-76. https://www.scitepress.org/Papers/2022/108959/108959.pdf

Bailey, K. (2020). Statistical Learning for Esports Match Prediction [Dissertação de Mestrado, California State Polytechnic University]. https://scholarworks.calstate.edu/downloads/kw52jb221

Block, S., e Haack, F. (2021). eSports: a new industry. In SHS Web of Conferences. EDP Sciences, 04002. https://doi.org/10.1051/shsconf/20219204002

Borowy, M., e Jin, D.J. (2013). Pioneering eSport: the experience economy and the marketing of early 1980s arcade gaming contests. International Journal of Communication, 7, 21. https://ijoc.org/index.php/ijoc/article/view/2296

Cruz, A.C.S., Rêgo, T.G. do, Filho, T. de M., e Malheiros, Y. (2021). League of Legends: An Application of Classification Algorithms to Verify the Prediction Importance of Main In-Game Variables. In Anais Estendidos do XX Simpósio Brasileiro de Jogos e Entretenimento Digital. SBC, 329-333. https://sol.sbc.org.br/index.php/sbgames_estendido/article/view/19662

Eaton, J.A., Mendonça, D.J., e Sangster, M.-D.D. (2018). Attack, Damage and Carry: Role Familiarity and Team Performance in League of Legends. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 130-134. SAGE Publications. https://journals.sagepub.com/doi/abs/10.1177/1541931218621030

Figueiredo Filho, D., Nunes, F., Rocha, E., Santos, M., Batista, M., e Alexandre Junior, J. (2011). O que fazer e o que não fazer com a regressão: pressupostos e aplicações do modelo linear de Mínimos Quadrados Ordinários (MQO). Revista Política Hoje, 20(1). https://doi.org/10.7910/DVN/LU5U7H

Godtsfriedt, J., e Cardoso, F.L. (2021). E-Sports: uma prática esportiva atual. Motrivivência, 33(64), 1-14. https://doi.org/10.5007/2175-8042.2021.e80001

Hodge, V.J., Devlin, S., Sephton, N., Block, F., Cowling, P.I., e Drachen, A. (2019). Win prediction in multiplayer esports: Live professional match prediction. IEEE Transactions on Games, 13(4), 368-379. https://ieeexplore.ieee.org/abstract/document/8906016

Kou, Y., e Nardi, B.A. (2014). Governance in League of Legends: A hybrid system. FDG, 7(1), 9. https://www.researchgate.net/publication/309738489

Krueger, J.S., e Lewis-Beck, M.S. (2008). Is OLS dead? The Political Methodologist, 15(2), 2-4. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6ec7536a138ea1350efbf73c6a2f714a56a72d48

Macedo, T., e Falcão, T. (2019). E-Sports, herdeiros de uma tradição. Intexto, 246-267. https://seer.ufrgs.br/intexto/article/view/83818

Mora-Cantallops, M., e Sicilia, M.-Á. (2018). MOBA games: A literature review. Entertainment computing, 26, 128-138. https://www.sciencedirect.com/science/article/abs/pii/S1875952117300149

Oracle Elixir (2023). Oracle Elixir. https://oracleselixir.com

Reitman, J.G., Anderson-Coto, M.J., Wu, M., e Lee, J.S. (2020). Esports research: A literature review. Games and Culture, 15(1), 32-50. https://www.researchgate.net/publication/332444877

Tuzcu, A., Ay, E.G., Uçar, A.U., e Kılınç, D. (2023). A Machine Learning Based Predictive Analysis Use Case For eSports Games. Artificial Intelligence Theory and Applications, 3(1), 25-35. https://www.researchgate.net/publication/373545790

Rubleske, J., Fletcher, T., e Westerfeld, B. (2020). E-Sports Analytics: A Primer and Resource for Student Research Projects and Lesson Plans. Journal of Instructional Pedagogies, 23. https://eric.ed.gov/?id=EJ1242004

Silva, A.L.C., Pappa, G.L., e Chaimowicz, L. (2018). Continuous outcome prediction of league of legends competitive matches using recurrent neural networks. SBC-Proceedings of SBCGames, 2179-2259. https://sbgames.org/sbgames2018/files/papers/ComputacaoShort/188226.pdf

Singh, N. (2020). Sport analytics: a review. The International Technology Management Review, 9, 64-69. https://link.springer.com/article/10.2991/itmr.k.200831.001

Biografía del autor/a

João Pedro de Assis Patricio Borges,

http://lattes.cnpq.br/4894314646656132

André Ribeiro da Silva,

http://lattes.cnpq.br/5028921287123224

Publicado
2026-01-04
Cómo citar
Borges, J. P. de A. P., & Silva, A. R. da. (2026). Previsión de Oro en partidas de League of Legends. Análisis de variables económicas. Lecturas: Educación Física Y Deportes, 30(332), 54-72. https://doi.org/10.46642/efd.v30i332.8387
Sección
Artículos de Investigación