Relación entre la intensidad del ejercicio físico y la mejora cognitiva en adultos con trastornos del neurodesarrollo

Una revisión integradora

Resumen

Introducción: Los trastornos del neurodesarrollo afectan funciones cognitivas esenciales, impactando la calidad de vida de los individuos, como se observa en el Trastorno por Déficit de Atención e Hiperactividad (TDAH). El ejercicio físico ha sido destacado como una intervención no farmacológica eficaz para mejorar las funciones cognitivas, especialmente las funciones ejecutivas. Objetivo: Este estudio tiene como objetivo investigar la relación entre la intensidad del entrenamiento físico y las mejoras cognitivas en adultos con trastornos del neurodesarrollo. Metodología: Se realizó una revisión integrativa de la literatura en las bases de datos PubMed, Scopus y Web of Science, y se incluyeron estudios publicados entre 2010 y 2023 que evaluaron la intensidad del entrenamiento físico y sus efectos en la cognición de adultos con trastornos del neurodesarrollo. Resultados: Los estudios revisados demostraron que la intensidad del entrenamiento físico influye significativamente en las funciones ejecutivas en adultos con trastornos del neurodesarrollo. Los entrenamientos de intensidad moderada a alta mostraron una mayor eficacia en la mejora de las funciones cognitivas, en comparación con los ejercicios de baja intensidad. Conclusión: El entrenamiento físico, especialmente en intensidades moderadas a altas, puede ser una intervención eficaz para mejorar las funciones cognitivas en adultos con trastornos del neurodesarrollo. Sin embargo, se necesita más investigación para definir la intensidad ideal y comprender mejor los mecanismos subyacentes.

Palabras clave: Trastornos del neurodesarrollo, Entrenamiento físico, Intensidad del ejercicio, Funciones cognitivas, Funciones ejecutivas

Referencias

American Psychiatric Association (2014). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Pub. https://doi.org/10.1176/appi.books.9780890425596

Audiffren, M., e André, N. (2019). The exercise-cognition relationship: A virtuous circle. Journal of sport and health science, 8(4), 339-347. https://doi.org/10.1016/j.jshs.2019.03.001

Ben-Zeev, T., Hirsh, T., Weiss, I., Gornstein, M., e Okun, E. (2020). The Effects of High-intensity Functional Training (HIFT) on Spatial Learning, Visual Pattern Separation and Attention Span in Adolescents. Frontiers in behavioral neuroscience, 14, 577390. https://doi.org/10.3389/fnbeh.2020.577390

Ben-Zeev, T., e Okun, E. (2021). High-Intensity Functional Training: Molecular Mechanisms and Benefits. Neuromolecular medicine, 23(3), 335-338. https://doi.org/10.1007/s12017-020-08638-8

Boat, R., e Cooper, S. B. (2019). Self-Control and Exercise: A Review of the Bi-Directional Relationship. Brain plasticity (Amsterdam, Netherlands), 5(1), 97-104. https://doi.org/10.3233/BPL-190082

Calverley, TA, Ogoh, S., Marley, CJ, Steggall, M., Marchi, N., Brassard, P., Lucas, SJE, Cotter, JD, Roig, M., Ainslie, PN, Wisløff, U., e Bailey, DM (2020). HIITing the brain with exercise: mechanisms, consequences and practical recommendations. The Journal of physiology, 598(13), 2513-2530. https://doi.org/10.1113/JP275021

Cigarroa, I., Lasserre-Laso, N., Zapata-Lamana, R., Leiva-Ordóñez, AM, Troncoso-Pantoja, C., Martínez-Sanguinetti, MA, Villagrán, M., Nazar, G., Díaz, X., Petermann-Rocha, F., e Celis-Morales, C. (2020). Asociación entre la velocidad de marcha y el riesgo de deterioro cognitivo en personas mayores que viven en la comunidad. Gerokomos, 31(4), 204-210. https://dx.doi.org/s1134-928x2020000500002

Dauwan, M., Begemann, M.J.H., Slot, M.I.E., Lee, E.H.M., Scheltens, P., e Sommer, I.E.C. (2021). Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: a transdiagnostic systematic review and meta-analysis of randomized controlled trials. Journal of neurology, 268(4), 1222-1246. https://doi.org/10.1007/s00415-019-09493-9

Diamond A. (2013). Executive functions. Annual review of psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750

Dhollande, S., Taylor, A., Meyer, S., e Scott, M. (2021). Conducting integrative reviews: a guide for novice nursing researchers. Journal of research in nursing: JRN, 26(5), 427-438. https://doi.org/10.1177/1744987121997907

Fedewa, A.L., e Ahn, S. (2011). The effects of physical activity and physical fitness on children's achievement and cognitive outcomes: a meta-analysis. Research quarterly for exercise and sport, 82(3), 521-535. https://doi.org/10.1080/02701367.2011.10599785

Haeger, A., Costa, A.S., Schulz, J.B., e Reetz, K. (2019). Cerebral changes improved by physical activity during cognitive decline: A systematic review on MRI studies. NeuroImage. Clinical, 23, 101933. https://doi.org/10.1016/j.nicl.2019.101933

Hartman, M.E., Ekkekakis, P., Dicks, N.D., e Pettitt, R.W. (2019). Dynamics of pleasure-displeasure at the limit of exercise tolerance: conceptualizing the sense of exertional physical fatigue as an affective response. The Journal of experimental biology, 222(Pt 3), jeb186585. https://doi.org/10.1242/jeb.186585

Herold, F., Törpel, A., Schega, L., e Müller, N.G. (2019). Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. European review of aging and physical activity: official journal of the European Group for Research into Elderly and Physical Activity, 16, 10. https://doi.org/10.1186/s11556-019-0217-2

Hwang, J., Kim, K., Brothers, R.M., Castelli, D.M., e Gonzalez-Lima, F. (2018). Association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults. Experimental brain research, 236(5), 1421-1430. https://doi.org/10.1007/s00221-018-5230-6

Jacquart, J., Dutcher, CD, Freeman, SZ, Stein, AT, Dinh, M., Carl, E., e Smits, JAJ (2019). The effects of exercise on transdiagnostic treatment targets: A meta-analytic review. Behaviour research and therapy, 115, 19-37. https://doi.org/10.1016/j.brat.2018.11.007

Kandola, A., Ashdown-Franks, G., Stubbs, B., Osborn, D.P.J., e Hayes, J.F. (2019). The association between cardiorespiratory fitness and the incidence of common mental health disorders: A systematic review and meta-analysis. Journal of affective disorders, 257, 748-757. https://doi.org/10.1016/j.jad.2019.07.088

Keller, A.S., Leikauf, J.E., Holt-Gosselin, B., Staveland, B.R., e Williams, L.M. (2019). Paying attention to attention in depression. Translational psychiatry, 9(1), 279. https://doi.org/10.1038/s41398-019-0616-1

Leckie, RL, Oberlin, LE, Voss, MW, Prakash, RS, Szabo-Reed, A., Chaddock-Heyman, L., Phillips, SM, Gothe, NP, Mailey, E., Vieira-Potter, VJ, Martin, SA, Pence, BD, Lin, M., Parasuraman, R., Greenwood, PM, Fryxell, KJ, Woods, JA, McAuley, E., Kramer, AF, e Erickson, KI (2014). BDNF mediates improvements in executive function following a 1-year exercise intervention. Frontiers in human neuroscience, 8, 985. https://doi.org/10.3389/fnhum.2014.00985

Lambourne, K., e Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain research, 1341, 12-24. https://doi.org/10.1016/j.brainres.2010.03.091

Landrigan, J.F., Bell, T., Crowe, M., Clay, O.J., e Mirman, D. (2020). Lifting cognition: a meta-analysis of effects of resistance exercise on cognition. Psychological research, 84(5), 1167-1183. https://doi.org/10.1007/s00426-019-01145-x

Klil-Drori, S., e Hechtman, L. (2020). Potential Social and Neurocognitive Benefits of Aerobic Exercise as Adjunct Treatment for Patients with ADHD. Journal of attention disorders, 24(5), 795-809. https://doi.org/10.1177/1087054716652617

McDowell, C.P., Dishman, R.K., Gordon, B.R., e Herring, M.P. (2019). Physical Activity and Anxiety: A Systematic Review and Meta-analysis of Prospective Cohort Studies. American journal of preventive medicine, 57(4), 545-556. https://doi.org/10.1016/j.amepre.2019.05.012

Mendes, K., Silveira, R., e Galvão, C. (2008). Integrative Review: The Methodological Preparation. Acta Paulista de Enfermagem, 21(3), 203-208. https://doi.org/10.1590/S0104-07072008000400018

Mehren, A., Özyurt, J., Thiel, C.M., Brandes, M., Lam, A.P., e Philipsen, A. (2019). Effects of Acute Aerobic Exercise on Response Inhibition in Adult Patients with ADHD. Scientific reports, 9(1), 19884. https://doi.org/10.1038/s41598-019-56332-y

Nauer, R.K., Dunne, M.F., Stern, C.E., Storer, T.W., e Schon, K. (2020). Improving fitness increases dentate gyrus/CA3 volume in the hippocampal head and enhances memory in young adults. Hippocampus, 30(5), 488-504. https://doi.org/10.1002/hipo.23166

Poblete Valderrama, F., Flores Rivera, C., Parra Cárdenas, V., Parga Acosta, R., Aguayo Alvarez, O., Reséndiz Hernández, JM, Rico Gallegos, C., Garrido Méndez, A., Vegas Vergara, MC, Matus Castillo, C., e Rojas, G. (2019). Relación entre calidad de vida y deterioro cognitivo en adultos mayores activos. Revista Peruana de Ciencias de la Actividad Física y del Deporte: RPCAFD, 6(1). https://rpcafd.com/index.php/rpcafd/article/view/28

Raichlen, D.A., Klimentidis, Y.C., Bharadwaj, P.K., e Alexander, G.E. (2020). Differential associations of engagement in physical activity and estimated cardiorespiratory fitness with brain volume in middle-aged to older adults. Brain imaging and behavior, 14(5), 1994-2003. https://doi.org/10.1007/s11682-019-00148-x

Raine, A. (2018). Antisocial Personality as a Neurodevelopmental Disorder. Annual review of clinical psychology, 14, 259-289. https://doi.org/10.1146/annurev-clinpsy-050817-084819

Reale, L., Bartoli, B., Cartabia, M., Zanetti, M., Costantino, MA, Canevini, MP, Termine, C., Bonati, M., e Lombardy ADHD Group (2017). Comorbidity prevalence and treatment outcome in children and adolescents with ADHD. European child & adolescent psychiatry, 26(12), 1443-1457. https://doi.org/10.1007/s00787-017-1005-z

Robinson, A.M., e Bucci, D.J. (2014). Individual and combined effects of physical exercise and methylphenidate on orienting behavior and social interaction in spontaneously hypertensive rats. Behavioral neuroscience, 128(6), 703-712. https://doi.org/10.1037/bne0000015

Sprague, B.N., Freed, S.A., Webb, C.E., Phillips, C.B., Hyun, J., e Ross, L.A. (2019). The impact of behavioral interventions on cognitive function in healthy older adults: A systematic review. Ageing research reviews, 52, 32-52. https://doi.org/10.1016/j.arr.2019.04.002

Soga, K., Kamijo, K., e Masaki, H. (2016). Effects of acute exercise on executive function in children with and without neurodevelopmental disorders. The Journal of Physical Fitness and Sports Medicine, 5(1), 57-67. https://doi.org/10.7600/jpfsm.5.57

Suls, J., Mogavero, J.N., Falzon, L., Pescatello, L.S., Hennessy, E.A., e Davidson, K.W. (2020). Health behaviour change in cardiovascular disease prevention and management: meta-review of behaviour change techniques to affect self-regulation. Health psychology review, 14(1), 43-65. https://doi.org/10.1080/17437199.2019.1691622

Sung, M.C., Ku, B., Leung, W., e MacDonald, M. (2022). The Effect of Physical Activity Interventions on Executive Function among People with Neurodevelopmental Disorders: A Meta-Analysis. Journal of autism and developmental disorders, 52(3), 1030-1050. https://doi.org/10.1007/s10803-021-05009-5

Tang, M.Y., Smith, D.M., Mc Sharry, J., Hann, M., e French, D.P. (2019). Behavior Change Techniques Associated with Changes in Postintervention and Maintained Changes in Self-Efficacy for Physical Activity: A Systematic Review with Meta-analysis. Annals of behavioral medicine: a publication of the Society of Behavioral Medicine, 53(9), 801-815. https://doi.org/10.1093/abm/kay090

Tari, AR, Norevik, CS, Scrimgeour, NR, Kobro-Flatmoen, A., Storm-Mathisen, J., Bergersen, LH, Wrann, CD, Selbæk, G., Kivipelto, M., Moreira, JBN, e Wisløff, U. (2019). Are the neuroprotective effects of exercise training systemically mediated? Progress in cardiovascular diseases, 62(2), 94-101. https://doi.org/10.1016/j.pcad.2019.02.003

Tsai, C.L., Pan, C.Y., Chen, F.C., e Tseng, Y.T. (2017). Open- and Closed-Skill Exercise Interventions Produce Different Neurocognitive Effects on Executive Functions in the Elderly: A 6-Month Randomized, Controlled Trial. Frontiers in aging neuroscience, 9, 294. https://doi.org/10.3389/fnagi.2017.00294

Voss, MW, Weng, TB, Narayana-Kumanan, K., Cole, RC, Wharff, C., Reist, L., Dubose, L., Sigurdsson, G., Mills, JA, Long, JD, Magnotta, VA, e Pierce, GL (2020). Acute Exercise Effects Predict Training Change in Cognition and Connectivity. Medicine and science in sports and exercise, 52(1), 131-140. https://doi.org/10.1249/MSS.0000000000002115

Zhang, Y., Fu, R., Sun, L., Gong, Y., e Tang, D. (2019). How Does Exercise Improve Implicit Emotion Regulation Ability: Preliminary Evidence of Mind-Body Exercise Intervention Combined With Aerobic Jogging and Mindfulness-Based Yoga. Frontiers in psychology, 10, 1888. https://doi.org/10.3389/fpsyg.2019.01888

Biografía del autor/a

Verônica Santos da Hora,

http://lattes.cnpq.br/6304356803113030

André Ribeiro da Silva,

http://lattes.cnpq.br/5028921287123224

Gleide Neves Cruz,

http://lattes.cnpq.br/1223372640295860

Jitone Leônidas Soares,

http://lattes.cnpq.br/416432337341224

Jônatas de França Barros,

http://lattes.cnpq.br/2184497905983937

Vânia Moraes Ferreira,

http://lattes.cnpq.br/0517271370281077

Cristiano André Hoppe Navarro,

http://lattes.cnpq.br/6323964271230651

Publicado
2024-11-03
Cómo citar
Hora, V. S. da, Silva, A. R. da, Cruz, G. N., Soares, J. L., Barros, J. de F., Ferreira, V. M., & Navarro, C. A. H. (2024). Relación entre la intensidad del ejercicio físico y la mejora cognitiva en adultos con trastornos del neurodesarrollo: Una revisión integradora. Lecturas: Educación Física Y Deportes, 29(318), 203-219. https://doi.org/10.46642/efd.v29i318.7265
Sección
Artículos de Revisión