Proteína vegetal e treinamento de força. Impactos nas concentrações plasmáticas de leucina

Resumo

O exercício físico, especialmente o treino de força, é benéfico à saúde, incluindo o aumento da massa muscular. A ingestão adequada de proteínas foi essencial para otimizar esses efeitos, especialmente a leucina, um aminoácido essencial. Embora as proteínas de origem animal tenham sido consideradas superiores, as proteínas vegetais, quando combinadas, também puderam ser eficazes. Este estudo teve como objetivo avaliar os efeitos de um suplemento proteico derivado de vagens imaturas de feijão-caupi sobre a concentração plasmática de leucina em jovens adultos após uma sessão de treino de força. Dez homens saudáveis participaram do estudo, realizando treino de força sob quatro condições: controle, exercício, suplementação e suplementação com exercício. Amostras de sangue foram coletadas para análise da leucina. A suplementação consistiu em 150g de vagens de feijão-caupi amassadas, com conteúdo proteico estimado entre 15g e 18g. Os níveis de leucina variaram significativamente entre as condições. O exercício, por si só, manteve os níveis por mais tempo, enquanto a suplementação resultou em um aumento precoce, porém menor. A combinação de suplementação e exercício demonstrou uma tendência de redução progressiva, sugerindo que a proteína vegetal pode não ter fornecido leucina suficiente para otimizar a resposta ao treino. Concluiu-se que a suplementação com proteína de feijão-caupi não aumentou significativamente a leucina plasmática após o treino, possivelmente devido à digestão mais lenta e a um perfil de aminoácidos menos completo. Estratégias adicionais, como a combinação com outros aminoácidos ou carboidratos, podem ter sido necessárias para otimizar o uso de proteínas vegetais no treino de força.

Palavras-chave: Suplementação de proteínas, Proteína vegetal, Treinamento de força, Leucina plasmática

Referências

Anderson, E., & Durstine, J.L. (2019). Physical activity, exercise, and chronic diseases: A brief review. Sports Medicine and Health Science, 1(1), 3-10. https://doi.org/10.1016/j.smhs.2019.08.006

Anthony, J.C., Anthony, T.G., Kimball, S.R., & Jefferson, L.S. (2001). Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. The Journal of Nutrition, 131(3), 856S-860S. https://doi.org/10.1093/jn/131.3.856S

Antonio, J., Candow, D.G., Forbes, S.C., Ormsbee, M.J., Saracino, P.G., & Roberts, J. (2020). Effects of Dietary Protein on Body Composition in Exercising Individuals. Nutrients, 12(6), 1890. https://doi.org/10.3390/nu12061890

Barrantes-Silman, P., Castillo-Cordero, A., Céspedes-Valverde, M., Delgado-Gómez, D., Jimenez-Rivera, A., & Santillan-Zúñiga, J. (2023). Interacción entre ejercicio, dieta hiperproteica, suplementos y AINEs: Efectos en la función renal. Revista Hispanoamericana de Ciencias de la Salud (RHCS), 9(2), 113-123 https://doi.org/10.56239/rhcs.2023.92.642

Berrazaga, I., Micard, V., Gueugneau, M., & Walrand, S. (2019). The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients, 11(8), 1825. https://doi.org/10.3390/nu11081825

Boirie, Y., Dangin, M., Gachon, P., Vasson, M.P., Maubois, J.L., & Beaufrère, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14930–14935. https://doi.org/10.1073/pnas.94.26.14930

Boirie, Y., Gachon, P., & Beaufrère, B. (1997). Splanchnic and whole-body leucine kinetics in young and elderly men. The American Journal of Clinical Nutrition, 65(2), 489–495. https://doi.org/10.1093/ajcn/65.2.489

Caspersen, C.J., Powell, K.E., & Christenson, G.M. (1985). Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2), 126–131. https://pmc.ncbi.nlm.nih.gov/articles/PMC1424733/

Chagas, M.H., Barbosa, J.R.M., & Lima, F.V. (2005). Comparação do número máximo de repetições realizadas a 40 e 80% de uma repetição máxima em dois diferentes exercícios na musculação entre os gêneros masculino e feminino. Revista Brasileira de Educação Física e Esporte, 19(1). https://doi.org/10.1590/S1807-55092005000100001

Churchward-Venne, TA, Breen, L., Di Donato, DM, Hector, AJ, Mitchell, CJ, Moore, DR, Stellingwerff, T., Breuille, D., Offord, EA, Baker, SK, & Phillips, SM (2014). Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: A double-blind, randomized trial. The American Journal of Clinical Nutrition, 99(2), 276–286. https://doi.org/10.3945/ajcn.113.068775

Garlick, P.J. (2005). The role of leucine in the regulation of protein metabolism. The Journal of Nutrition, 135(6 Suppl), 1553S-6S. https://doi.org/10.1093/jn/135.6.1553S

Gorissen, SHM, Crombag, JJR, Senden, JMG, Waterval, WAH, Bierau, J., Verdijk, LB, & van Loon, LJC (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50(12), 1685–1695. https://doi.org/10.1007/s00726-018-2640-5

Gorissen, SHM, Trommelen, J., Kouw, IWK, Holwerda, AM, Pennings, B., Groen, BBL, Wall, BT, Churchward-Venne, TA, Horstman, AMH, Koopman, R., Burd, NA, Fuchs, CJ, Dirks, ML, Res, PT, Senden, JMG, Steijns, JMJM, de Groot, LCPGM, Verdijk, LB, & van Loon, LJC (2020). Protein Type, Protein Dose, and Age Modulate Dietary Protein Digestion and Phenylalanine Absorption Kinetics and Plasma Phenylalanine Availability in Humans. The Journal of Nutrition, 150(8), 2041–2050. https://doi.org/10.1093/jn/nxaa024

Gorissen, SH, Trommelen, J., Kouw, IW, Kouw, IW, Pennings, B., Pennings, B., Wall, BT, Churchward-Venne, TA, Horstman, AM, Koopman, R., Burd, NA, Fuchs, CJ, Dirks, ML, Res, PT, Senden, JM, Steijns, JM, de Groot, LC, Verdijk, LB, & van Loon, LJ (2020). Protein Type, Protein Dose, and Age Modulate Dietary Protein Digestion and Phenylalanine Absorption Kinetics and Plasma Phenylalanine Availability in Humans. The Journal of Nutrition, 150(8), 2041–2050. https://doi.org/10.1093/jn/nxaa024

Harper, A.E., Miller, R.H., & Block, K.P. (1984). Branched-chain amino acid metabolism. Annual Review of Nutrition, 4, 409–454. https://doi.org/10.1146/annurev.nu.04.070184.002205

Jäger, R., Kerksick, CM, Campbell, BI, Cribb, PJ, Wells, SD, Skwiat, TM, Purpura, M., Ziegenfuss, TN, Ferrando, AA, Arent, SM, Smith-Ryan, AE, Stout, JR, Arciero, PJ, Ormsbee, MJ, Taylor, LW, Wilborn, CD, Kalman, DS, Kreider, RB, Willoughby, DS, Hoffman, JR, Krzykowski, JL, & Antonio, J. (2017). International Society of Sports Nutrition Position Stand: Protein and exercise. Journal of the International Society of Sports Nutrition, 14(1), 20. https://doi.org/10.1186/s12970-017-0177-8

Kerksick, C.M., Jagim, A., Hagele, A., & Jäger, R. (2021). Plant Proteins and Exercise: What Role Can Plant Proteins Have in Promoting Adaptations to Exercise? Nutrients, 13(6), 1962. https://doi.org/10.3390/nu13061962

Kerksick, CM, Wilborn, CD, Roberts, MD, Smith-Ryan, A., Kleiner, SM, Jäger, R., Collins, R., Cooke, M., Davis, JN, Galvan, E., Greenwood, M., Lowery, LM, Wildman, R., Antonio, J., & Kreider, RB (2018). ISSN exercise & sports nutrition review update: Research & recommendations. Journal of the International Society of Sports Nutrition, 15(1), 38. https://doi.org/10.1186/s12970-018-0242-y

Krzysztofik, M., Wilk, M., Wojdała, G., & Gołaś, A. (2019). Maximizing Muscle Hypertrophy: A Systematic Review of Advanced Resistance Training Techniques and Methods. International Journal of Environmental Research and Public Health, 16(24), 4897. https://doi.org/10.3390/ijerph16244897

Langyan, S., Yadava, P., Khan, F.N., Dar, Z.A., Singh, R., & Kumar, A. (2021). Sustaining Protein Nutrition through Plant-Based Foods. Frontiers in Nutrition, 8, 772573. https://doi.org/10.3389/fnut.2021.772573

Machado, N., Oppolzer, D., Ramos, A., Ferreira, L., Rosa, EA, Rodrigues, M., Domínguez-Perles, R., & Barros, AI (2017). Evaluating the freezing impact on the proximate composition of immature cowpea (Vigna unguiculata L.) pods: Classical versus spectroscopic approaches. Journal of the Science of Food and Agriculture, 97(13), 4295–4305. https://doi.org/10.1002/jsfa.8305

Mayhew, J.L., Johnson, B.D., Lamonte, M.J., Lauber, D., & Kemmler, W. (2008). Accuracy of prediction equations for determining one repetition maximum bench press in women before and after resistance training. Journal of Strength and Conditioning Research, 22(5), 1570–1577. https://doi.org/10.1519/JSC.0b013e31817b02ad

Morocho-Quinchuela, F.B., Martínez-Martínez, R., Reascos-Chalacán, M.Y., Morocho-Quinchuela, F.B., Martínez-Martínez, R., & Reascos-Chalacán, M.Y. (2023). Efectos en la salud del consumo de dietas hiperproteicas en deportistas de fuerza. Revista de Ciencias Médicas de Pinar del Río, 27(6). http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1561-31942023000700022&lng=es&nrm=iso&tlng=es

Pennings, B., Boirie, Y., Senden, J.M.G., Gijsen, A.P., Kuipers, H., & van Loon, L.J.C. (2011). Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. The American Journal of Clinical Nutrition, 93(5), 997–1005. https://doi.org/10.3945/ajcn.110.008102

Pinckaers, P.J.M., Trommelen, J., Snijders, T., & van Loon, L.J.C. (2021). The Anabolic Response to Plant-Based Protein Ingestion. Sports Medicine (Auckland, N.Z.), 51(Suppl 1), 59–74. https://doi.org/10.1007/s40279-021-01540-8

Ravelli, S., Bernal, B., Bonin Chiogna, M., & Araya, D. (2022). Evaluación del consumo proteico y su percepción en deportistas de waterpolo y hockey subacuático del Club Regatas de Santa Fe. Diaeta, 40, e22040001. https://diaeta.aadynd.org.ar/index.php/2022/article/view/1

Shimomura, Y., Murakami, T., Nakai, N., Nagasaki, M., & Harris, R.A. (2004). Exercise promotes BCAA catabolism: Effects of BCAA supplementation on skeletal muscle during exercise. The Journal of Nutrition, 134(6 Suppl), 1583S-1587S. https://doi.org/10.1093/jn/134.6.1583S

Stokes, T., Hector, A.J., Morton, R.W., McGlory, C., & Phillips, S.M. (2018). Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients, 10(2), 180. https://doi.org/10.3390/nu10020180

Tang, J.E., Moore, D.R., Kujbida, G.W., Tarnopolsky, M.A., & Phillips, S.M. (2009). Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of Applied Physiology, 107(3), 987–992. https://doi.org/10.1152/japplphysiol.00076.2009

Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515(7528), 518–522. https://doi.org/10.1038/nature13959

Tipton, K.D., & Ferrando, A.A. (2008). Improving muscle mass: Response of muscle metabolism to exercise, nutrition and anabolic agents. Essays in Biochemistry, 44, 85–98. https://doi.org/10.1042/BSE0440085

Trapp, D., Knez, W., & Sinclair, W. (2010). Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature. Journal of Sports Sciences, 28(12), 1261–1268. https://doi.org/10.1080/02640414.2010.507676

Truong, V. (1996). Protein Contents, Amino Acid Compositions and Nitrogen-to-Protein Conversion Factors for Cassava Roots. Journal of the Science of Food and Agriculture, 70(1). https://doi.org/10.1002/(SICI)1097-0010(199601)70:1%3C51::AID-JSFA463%3E3.0.CO;2-W

van Vliet, S., Burd, N.A., & van Loon, L.J.C. (2015). The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. The Journal of Nutrition, 145(9), 1981–1991. https://doi.org/10.3945/jn.114.204305

Volek, JS, Volk, BM, Gómez, AL, Kunces, LJ, Kupchak, BR, Freidenreich, DJ, Aristizabal, JC, Saenz, C., Dunn-Lewis, C., Ballard, KD, Quann, EE, Kawiecki, DL, Flanagan, SD, Comstock, BA, Fragala, MS, Earp, JE, Fernandez, ML, Bruno, RS, Ptolemy, AS, Kellogg, MD, Maresh, CM, & Kraemer, WJ (2013). Whey protein supplementation during resistance training augments lean body mass. Journal of the American College of Nutrition, 32(2), 122–135. https://doi.org/10.1080/07315724.2013.793580

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, LJ, Fanzo, J., Hawkes, C., Zurayk, R., Rivera, JA, De Vries, W., Majele Sibanda, L., Afshin, A., Chaudhary, A., Herrero, M., Agustina, R., Branca, F., Lartey, A., Fan, S., Crona, B., Fox, E., Bignet, V., Troell, M., Lindahl, T., Singh, S., Cornell, SE, Reddy, KS, Narain, S., Nishtar, S., & Murray, CJL (2019). Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet (London, England), 393(10170), 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

Yasuda, J., Tomita, T., Arimitsu, T., & Fujita, S. (2020). Evenly Distributed Protein Intake over 3 Meals Augments Resistance Exercise-Induced Muscle Hypertrophy in Healthy Young Men. The Journal of Nutrition, 150(7), 1845–1851. https://doi.org/10.1093/jn/nxaa101

Zhao, S., Xu, Y., Li, J., & Ning, Z. (2024). The Effect of Plant-Based Protein Ingestion on Athletic Ability in Healthy People-A Bayesian Meta-Analysis with Systematic Review of Randomized Controlled Trials. Nutrients, 16(16), 2748. https://doi.org/10.3390/nu16162748

Biografia Autor

Ethel Machergiany,

http://lattes.cnpq.br/4073233765073130

Publicado
2025-04-05
Como Citar
Machergiany, E., Soares, J., Azevedo, L., Abrantes, C., Barros, A., & Mota, M. P. (2025). Proteína vegetal e treinamento de força. Impactos nas concentrações plasmáticas de leucina. Lecturas: Educación Física Y Deportes, 30(323), 105-119. https://doi.org/10.46642/efd.v30i323.8136
Seção
Artigos de pesquisa