La influencia de las monoaminas -dopamina y serotonina- en la capacidad para realizar ejercicio físico

Resumen

La capacidad para realizar ejercicio físico está influenciada por varios factores, entre ellos la concentración y actividad de las monoaminas, como la dopamina y la serotonina. Estos neurotransmisores modulan varios sistemas fisiológicos que interfieren con la respuesta hormonal, el control del movimiento, la termorregulación y la motivación para el esfuerzo. Por tanto, comprender cómo las monoaminas interfieren en la capacidad de realizar ejercicio puede ser fundamental para poder diseñar estrategias que mejoren el rendimiento físico. Dado lo anterior, el objetivo de este estudio es realizar una revisión bibliográfica sobre la influencia de las monoaminas en la capacidad para realizar ejercicio físico.

Palabras clave: Motivación, Termorregulación, Rendimiento físico, Fatiga

Referencias

Acworth, I., Nicholass, J., Morgan, B., e Newsholme, E.A. (1986). Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochemical and biophysical research communications, 137(1), 149-153. https://doi.org/10.1016/0006-291x(86)91188-5

Akiyama, K., e Sutoo, D.E. (1999). Rectifying effect of exercise on hypertension in spontaneously hypertensive rats via a calcium-dependent dopamine synthesizing system in the brain. Brain research, 823(1-2), 154-160. https://doi.org/10.1016/s0006-8993(99)01171-3

Amann, M., Sidhu, S.K., McNeil, C.J., e Gandevia, S.C. (2022). Critical considerations of the contribution of the corticomotoneuronal pathway to central fatigue. The Journal of Physiology, 600(24), 5203-5214. https://doi.org/10.1113/jp282564

Badawy, A.A., e Guillemin, G.J. (2022). Species differences in tryptophan metabolism and disposition. International Journal of Tryptophan Research, 15. https://doi.org/10.1177/11786469221122511

Bailey, S.P., Davis, J.M., e Ahlborn, E.N. (1993). Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. Journal of Applied Physiology, 74(6), 3006-3012. https://doi.org/10.1152/jappl.1993.74.6.3006

Balthazar, C.H., Leite, L.H., Rodrigues, A.G., e Coimbra, C.C. (2009). Performance-enhancing and thermoregulatory effects of intracerebroventricular dopamine in running rats. Pharmacology biochemistry and behavior, 93(4), 465-469. https://doi.org/10.1016/j.pbb.2009.06.009

Ben-Jonathan, N., e Hnasko, R. (2001). Dopamine as a prolactin (PRL) inhibitor. Endocrine reviews, 22(6), 724-763. https://doi.org/10.1210/edrv.22.6.0451

Caperuto, E.C., Dos Santos, R.V.T., Mello, M.T.D., e Costa Rosa, L.F.B.P. (2009). Effect of endurance training on hypothalamic serotonin concentration and performance. Clinical and Experimental Pharmacology and Physiology, 36(2), 189-191. https://doi.org/10.1111/j.1440-1681.2008.05111.x

Chaouloff, F. (1993). Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Research Reviews, 18(1), 1-32. https://doi.org/10.1016/0165-0173(93)90005-k

Chaouloff, F. (1997). Effects of acute physical exercise on central serotonergic systems. Medicine and science in sports and exercise, 29(1), 58-62. https://doi.org/10.1097/00005768-199701000-00009

Chaouloff, F. (2000). Serotonin, stress and corticoids. Journal of psychopharmacology, 14(2), 139-151. https://doi.org/10.1177/026988110001400203

Chaouloff, F., Elghozi, J.L., Guezennec, Y., e Laude, D. (1985). Effects of conditioned running on plasma, liver and brain tryptophan and on brain 5-hydroxytryptamine metabolism of the rat. British journal of pharmacology, 86(1), 33. https://doi.org/10.1111/j.1476-5381.1985.tb09432.x

Chaouloff, F., Laude, D., e Elghozi, J.L. (1989). Physical exercise: evidence for differential consequences of tryptophan on 5-HT synthesis and metabolism in central serotonergic cell bodies and terminals. Journal of Neural Transmission/General Section JNT, 78, 121-130. https://doi.org/10.1007/bf01252498

Cordeiro, LMS, Guimaraes, JB, Wanner, SP, La Guardia, RB, Miranda, RM, Marubayashi, U., e Soares, DD (2014). Inhibition of tryptophan hydroxylase abolishes fatigue induced by central tryptophan in exercising rats. Scandinavian Journal of Medicine & Science in Sports, 24(1), 80-88. https://doi.org/10.1111/j.1600-0838.2012.01464.x

Cordeiro, LMS, Rabelo, PCR, Moraes, MM, Teixeira-Coelho, F., Coimbra, CC, Wanner, SP, e Soares, DD (2017). Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems. Brazilian journal of medical and biological research, 50, e6432. https://doi.org/10.1590/1414-431x20176432

Cox, B., Kerwin, R., e Lee, T.F. (1978). Dopamine receptors in the central thermoregulatory pathways of the rat. The Journal of Physiology, 282(1), 471-483. https://doi.org/10.1113/jphysiol.1978.sp012476

Cox, B., Kerwin, R., e Lee, T.F. (1978). Dopamine receptors in the central thermoregulatory pathways of the rat. The Journal of Physiology, 282(1), 471-483. https://doi.org/10.1113/jphysiol.1978.sp012476

Davis, J.M., e Bailey, S.P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Medicine and science in sports and exercise, 29(1), 45-57. https://doi.org/10.1097/00005768-199701000-00008

Davis, J.M., Alderson, N.L., e Welsh, R.S. (2000). Serotonin and central nervous system fatigue: nutritional considerations. The American journal of clinical nutrition, 72(2), 573S-578S. https://doi.org/10.1093/ajcn/72.2.573s

Dwyer, D., e Browning, J. (2000). Endurance training in Wistar rats decreases receptor sensitivity to a serotonin agonist. Acta physiologica scandinavica, 170(3), 211-216. https://doi.org/10.1046/j.1365-201x.2000.00774.x

Edinoff, AN, Akuly, HA, Hanna, TA, Ochoa, CO, Patti, SJ, Ghaffar, YA, Viswanath, O., Urits, I., Boyer, AG, Cornett, EM, e Kaye, AM (2021). Selective serotonin reuptake inhibitors and adverse effects: a narrative review. Neurology International, 13(3), 387-401. https://doi.org/10.3390/neurolint13030038

Feldberg, W., e Myers, R.D. (1965). Changes in temperature produced by micro-injections of amines into the anterior hypothalamus of cats. The Journal of physiology, 177(2), 239. https://doi.org/10.1113%2Fjphysiol.1965.sp007589

Foley, T.E., e Fleshner, M. (2008). Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular medicine, 10, 67-80. https://doi.org/10.1007/s12017-008-8032-3

Gerald, M.C. (1978). Effects of (+)-amphetamine on the treadmill endurance performance of rats. Neuropharmacology, 17(9), 703-704. https://doi.org/10.1016/0028-3908(78)90083-7

Greenwood, BN, Foley, TE, Le, TV, Strong, PV, Loughridge, AB, Day, HE, e Fleshner, M. (2011). Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behavioural brain research, 217(2), 354-362. https://doi.org/10.1016/j.bbr.2010.11.005

Hasegawa, H., Yazawa, T., Yasumatsu, M., Otokawa, M., e Aihara, Y. (2000). Alteration in dopamine metabolism in the thermoregulatory center of exercising rats. Neuroscience letters, 289(3), 161-164. https://doi.org/10.1016/s0304-3940(00)01276-3

Heyes, M.P., Garnett, E.S., e Coates, G. (1988). Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Sciences, 42(16), 1537-1542. https://doi.org/10.1016/0024-3205(88)90011-2

Hortobágyi, T., Vetrovsky, T., Balbim, GM, Silva, NCBS, Manca, A., Deriu, F., Kolmos, M., Kruuse, C., Liu-Ambrose, T., Radák, Z., Váczi, M., Johansson, H., Santos, PCR, Franzén, E., e Granacher, U. (2022). The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Research Reviews, 80. https://doi.org/10.1016/j.arr.2022.101698

Kiyatkin, E.A. (2008). Brain temperature responses to salient stimuli persist during dopamine receptor blockade despite a blockade of locomotor responses. Pharmacology Biochemistry and Behavior, 91(2), 233-242. https://doi.org/10.1016/j.pbb.2008.08.004

Knab, A.M., e Lightfoot, J.T. (2010). Does the difference between physically active and couch potato lie in the dopamine system?. International journal of biological sciences, 6(2), 133. https://doi.org/10.7150/ijbs.6.133

Kravitz, A.V., e Kreitzer, A.C. (2012). Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology, 27(3), 167-177. https://doi.org/10.1152/physiol.00004.2012

Leite, L.H., Rodrigues, A.G., Soares, D.D., Marubayashi, U., e Coimbra, C.C. (2010). Central fatigue induced by losartan involves brain serotonin and dopamine content. Med Sci Sports Exerc, 42(8), 1469-1476. https://doi.org/10.1249/mss.0b013e3181d03d36

Marques, E., Vasconcelos, F., Rolo, MR, Pereira, FC, Silva, AP, Macedo, TR, e Ribeiro, CF (2008). Influence of Chronic Exercise on the Amphetamine-Induced Dopamine Release and Neurodegeneration in the Striatum of the Rat. Annals of the New York Academy of Sciences, 1139(1), 222-231. https://doi.org/10.1196/annals.1432.041

Meeusen, R., e Decroix, L. (2018). Nutritional supplements and the brain. International journal of sport nutrition and exercise metabolism, 28(2), 200-211. https://doi.org/10.1123/ijsnem.2017-0314

Meeusen, R., e Roelands, B. (2018). Fatigue: is it all neurochemistry?. European journal of sport science, 18(1), 37-46. https://doi.org/10.1080/17461391.2017.1296890

Meeusen, R., Watson, P., Hasegawa, H., Roelands, B., e Piacentini, M.F. (2006). Central fatigue: the serotonin hypothesis and beyond. Sports Medicine, 36, 881-909. https://doi.org/10.2165/00007256-200636100-00006

Mora, F., Segovia, G., Del Arco, A., de Blas, M., e Garrido, P. (2012). Stress, neurotransmitters, corticosterone and body–brain integration. Brain research, 1476, 71-85. https://doi.org/10.1016/j.brainres.2011.12.049

Nash, J.F., e Meltzer, H.Y. (2023). Neuroendocrine studies in psychiatric disorders: the role of serotonin. In Role Of Serotonin In Psychiatric Disorders (pp. 57-90). Routledge.

Navarro, PA, Paranhos, T., Lovo, E., De Oliveira-Souza, R., Gorgulho, AA, De Salles, A., e López, WOC (2022). Safety and feasibility of nucleus accumbens surgery for drug addiction: a systematic review. Neuromodulation: Technology at the Neural Interface, 25(2), 171-184. https://doi.org/10.1111/ner.13348

Newsholme, E.A., Blomstrand, E., e Ekblom, B. (1992). Physical and mental fatigue: metabolic mechanisms and importance of plasma amino acids. British medical bulletin, 48(3), 477-495. https://doi.org/10.1093/oxfordjournals.bmb.a072558

Pérez-Fernández, J., Barandela, M., e Jiménez-López, C. (2021). The dopaminergic control of movement-evolutionary considerations. International journal of molecular sciences, 22(20), 11284. https://doi.org/10.3390%2Fijms222011284

Petzinger, GM, Walsh, JP, Akopian, G., Hogg, E., Abernathy, A., Arevalo, P., Turnquist, P., Vučković, M., Fisher, BE, Togasaki, DM, e Jakowec, MW (2007). Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Journal of Neuroscience, 27(20), 5291-5300. https://doi.org/10.1523/JNEUROSCI.1069-07.2007

Pourhamzeh, M., Moravej, F. G., Arabi, M., Shahriari, E., Mehrabi, S., Ward, R., Ahadi, R., e Joghataei, MT (2022). The roles of serotonin in neuropsychiatric disorders. Cellular and molecular neurobiology, 42(6), 1671-1692. https://doi.org/10.1007/s10571-021-01064-9

Rabelo, PC, Horta, NA, Cordeiro, LM, Poletini, MO, Coimbra, CC, Szawka, RE, e Soares, DD (2017). Intrinsic exercise capacity in rats influences dopamine neuroplasticity induced by physical training. Journal of Applied Physiology, 123(6), 1721-1729. https://doi.org/10.1152/japplphysiol.00506.2017

Rodrigues, A.G., Soares, D.D., Marubayashi, U., e Coimbra, C.C. (2009). Heat loss during exercise is related to serotonin activity in the preoptic area. Neuroreport, 20(8), 804-808. https://doi.org/10.1097/wnr.0b013e32832b8c90

Roelands, B., Goekint, M., Buyse, L., Pauwels, F., De Schutter, G., Piacentini, F., Hasegawa, H., Watson, P., e Meeusen, R. (2009). Time trial performance in normal and high ambient temperature: is there a role for 5-HT?. European journal of applied physiology, 107, 119-126. https://doi.org/10.1007/s00421-009-1109-3

Roelands, B., Hasegawa, H., Watson, P., Piacentini, MF, Buyse, L., De Schutter, G., e Meeusen, RR (2008). The effects of acute dopamine reuptake inhibition on performance. Medicine & Science in Sports & Exercise, 40(5), 879-885. http://dx.doi.org/10.1249/MSS.0b013e3181659c4d

Romanowski, W., e Grabiec, S. (1974). The role of serotonin in the mechanism of central fatigue. Acta Physiologica Polonica, 25(2), 127-134. https://pubmed.ncbi.nlm.nih.gov/4830711/

Rothhaas, R., e Chung, S. (2021). Role of the preoptic area in sleep and thermoregulation. Frontiers in Neuroscience, 15, 664781. https://doi.org/10.3389/fnins.2021.664781

Ryczko, D., e Dubuc, R. (2023). Dopamine control of downstream motor centers. Current Opinion in Neurobiology, 83, 102785. https://doi.org/10.1016/j.conb.2023.102785

Soares, D.D., Coimbra, C.C., e Marubayashi, U. (2007). Tryptophan-induced central fatigue in exercising rats is related to serotonin content in preoptic area. Neuroscience letters, 415(3), 274-278. https://doi.org/10.1016/j.neulet.2007.01.035

Soares, D.D., Lima, N.R.V., Coimbra, C.C., e Marubayashi, U. (2003). Evidence that tryptophan reduces mechanical efficiency and running performance in rats. Pharmacology Biochemistry and Behavior, 74(2), 357-362. https://doi.org/10.1016/s0091-3057(02)01003-1

Soares, D.D., Lima, N.R.V., Coimbra, C.C., e Marubayashi, U. (2004). Intracerebroventricular tryptophan increases heating and heat storage rate in exercising rats. Pharmacology Biochemistry and Behavior, 78(2), 255-261. https://doi.org/10.1016/j.pbb.2004.03.015

Sujkowski, A., Hong, L., Wessells, R.J., e Todi, S.V. (2022). The protective role of exercise against age-related neurodegeneration. Ageing Research Reviews, 74, 101543. https://doi.org/10.1016/j.arr.2021.101543

Takahashi, H., Takada, Y., Nagai, N., Urano, T., e Takada, A. (2000). Serotonergic neurons projecting to hippocampus activate locomotion. Brain research, 869(1-2), 194-202. https://doi.org/10.1016/S0006-8993(00)02385-4

Tang, Q., Assali, D.R., Güler, A.D., e Steele, A.D. (2022). Dopamine systems and biological rhythms: Let’s get a move on. Frontiers in Integrative Neuroscience, 16, 957193. https://doi.org/10.3389%2Ffnint.2022.957193

Teixeira-Coelho, F., Uendeles-Pinto, J.P., Serafim, A.C.A., Wanner, S.P., de Matos Coelho, M., e Soares, D.D. (2014). The paroxetine effect on exercise performance depends on the aerobic capacity of exercising individuals. Journal of sports science & medicine, 13(2), 232. https://www.researchgate.net/publication/262021422

Tornero-Aguilera, J.F., Jimenez-Morcillo, J., Rubio-Zarapuz, A., e Clemente-Suárez, V.J. (2022). Central and peripheral fatigue in physical exercise explained: A narrative review. International journal of environmental research and public health, 19(7), 3909. https://doi.org/10.3390/ijerph19073909

Van Galen, K.A., Ter Horst, K.W., e Serlie, M.J. (2021). Serotonin, food intake, and obesity. Obesity Reviews, 22(7), e13210. https://doi.org/10.1111/obr.13210

Vanderwolf, C. H. (1989). A general role for serotonin in the control of behavior: studies with intracerebral 5, 7-dihydroxytryptamine. Brain research, 504(2), 192-198. https://doi.org/10.1016/0006-8993(89)91356-5

Vanderwolf, C.H., Leung, L.W.S., Baker, G.B., e Stewart, D.J. (1989). The role of serotonin in the control of cerebral activity: studies with intracerebral 5, 7-dihydroxytryptamine. Brain research, 504(2), 181-191. https://doi.org/10.1016/0006-8993(89)91355-3

Yamashita, M. (2020). Potential role of neuroactive tryptophan metabolites in central fatigue: establishment of the fatigue circuit. International Journal of Tryptophan Research, 13, 1178646920936279. http://dx.doi.org/10.1177/1178646920936279

Yatham, L.N., e Steiner, M. (1993). Neuroendocrine probes of serotonergic function: a critical review. Life sciences, 53(6), 447-463. https://doi.org/10.1016/0024-3205(93)90696-z

Biografía del autor/a

Patricia da Conceição Rocha Rabelo,

http://lattes.cnpq.br/4980120727283786

Publicado
2024-04-03
Cómo citar
Rabelo, P. da C. R. (2024). La influencia de las monoaminas -dopamina y serotonina- en la capacidad para realizar ejercicio físico. Lecturas: Educación Física Y Deportes, 29(311), 182-194. https://doi.org/10.46642/efd.v29i311.7255
Sección
Artículos de Revisión